Ranking of non-coding pathogenic variants and putative essential regions of the human genome

被引:56
|
作者
Wells, Alex [1 ]
Heckerman, David [2 ]
Torkamani, Ali [3 ]
Yin, Li [3 ]
Sebat, Jonathan [4 ,5 ,6 ]
Ren, Bing [7 ]
Telenti, Amalio [3 ,8 ,9 ]
di Iulio, Julia [3 ,9 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[3] Scripps Res Translat Inst, La Jolla, CA 92037 USA
[4] Univ Calif San Diego, Beyster Inst Psychiat Genom, Dept Psychiat, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[7] Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[8] Scripps Res Inst, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
[9] Vir Biotechnol Inc, San Francisco, CA 94158 USA
关键词
REGULATORY ELEMENTS; IDENTIFICATION; FRAMEWORK; DATABASE; GENES; ATLAS; MAP;
D O I
10.1038/s41467-019-13212-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A gene is considered essential if loss of function results in loss of viability, fitness or in disease. This concept is well established for coding genes; however, non-coding regions are thought less likely to be determinants of critical functions. Here we train a machine learning model using functional, mutational and structural features, including new genome essentiality metrics, 3D genome organization and enhancer reporter data to identify deleterious variants in non-coding regions. We assess the model for functional correlates by using data from tiling-deletion-based and CRISPR interference screens of activity of cis-regulatory elements in over 3Mb of genome sequence. Finally, we explore two user cases that involve indels and the disruption of enhancers associated with a developmental disease. We rank variants in the non-coding genome according to their predicted deleteriousness. The model prioritizes non-coding regions associated with regulation of important genes and with cell viability, an in vitro surrogate of essentiality.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] PAX6 non-coding regions variants leading to aniridia spectrum
    Plaisancie, J.
    Tarilonte, M.
    Ramos, P.
    Dollfus, H.
    Blanco-Kelly, F.
    Kaplan, J.
    Fares-Taie, L.
    Francannet, C.
    Goldenberg, A.
    Rozet, J. M.
    Ayuso, C.
    Chassaing, N.
    Calvas, P.
    Corton Perez, M.
    ACTA OPHTHALMOLOGICA, 2018, 96 : 24 - 24
  • [42] Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression
    Li, Mulin Jun
    Yan, Bin
    Sham, Pak Chung
    Wang, Junwen
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (03) : 393 - 412
  • [43] A TOOL FOR IDENTIFYING PUTATIVE SNPs IN NON-CODING GENOMIC REGIONS, APPLIED TO HISTAMINE RECEPTORS
    Rojano, E.
    Cornejo-Garcia, J. A.
    Blanca, M.
    Ranea, J. A.
    Perkins, J.
    INFLAMMATION RESEARCH, 2015, 64 : S43 - S44
  • [44] ANOMALOUS DINUCLEOTIDE FREQUENCIES IN BOTH CODING AND NON-CODING REGIONS FROM THE GENOME OF THE HUMAN MALARIA PARASITE PLASMODIUM-FALCIPARUM
    HYDE, JE
    SIMS, PFG
    GENE, 1987, 61 (02) : 177 - 187
  • [45] Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios
    Perez-Reytor, Diliana
    Plaza, Nicolas
    Espejo, Romilio T.
    Navarrete, Paola
    Bastias, Roberto
    Garcia, Katherine
    FRONTIERS IN MICROBIOLOGY, 2017, 7
  • [46] Chromosomal Breakpoints Target a Variety of Functional Elements in the Human Genome, Including Annotated, Unannotated, Coding and Non-Coding Transcriptional Regions
    Tommerup, N.
    Bache, I.
    Nielsen, N. M.
    Kjaergaard, S.
    Brondum-Nielsen, K.
    Frisch, M.
    Lind-Thomsen, A.
    Mang, Y.
    Hansen, C.
    Silahtaroglu, A.
    Kirchhoff, M.
    Jensen, P. K. A.
    Fagerberg, C.
    Krogh, L. N.
    Hansen, J.
    Bryndorf, T.
    El-Schich, Z.
    Henriksen, K. F.
    Anderson, C. M.
    Bak, M.
    Halgren, C.
    CYTOGENETIC AND GENOME RESEARCH, 2012, 136 (04) : 324 - 324
  • [47] Transposons and non-coding regions drive the intrafamily differences of genome size in insects
    Cong, Yuyang
    Ye, Xinhai
    Mei, Yang
    He, Kang
    Li, Fei
    ISCIENCE, 2022, 25 (09)
  • [48] Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome
    Tak, Yu Gyoung
    Farnham, Peggy J.
    EPIGENETICS & CHROMATIN, 2015, 8
  • [49] Systematic analysis of the effects of genetic variants on chromatin accessibility to decipher functional variants in non-coding regions
    Wang, Dongyang
    Wu, Xiaohong
    Jiang, Guanghui
    Yang, Jianye
    Yu, Zhanhui
    Yang, Yanbo
    Yang, Wenqian
    Niu, Xiaohui
    Tang, Ke
    Gong, Jing
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome
    Yu Gyoung Tak
    Peggy J. Farnham
    Epigenetics & Chromatin, 8