CLASSIFICATION OF STEADY GRADIENT RICCI SOLITONS ON TWO-MANIFOLDS

被引:3
|
作者
Bercu, Gabriel [1 ]
Postolache, Mihai [2 ]
机构
[1] Univ Dunarea de Jos, Dept Math, Galati 800008, Romania
[2] Univ Politehn Bucuresti, Fac Sci Appl, Bucharest 060042, Romania
关键词
Riemannian manifold; curvature; gradient Ricci soliton; completeness;
D O I
10.1142/S0219887812500491
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In our very recent published work [Int. J. Geom. Meth. Mod. Phys. 8(4) (2011) 783-796], we considered the Riemannian manifold M = R-2 endowed with the warped metric (g) over bar (x, y) = diag(g(y), 1), where g is a positive function, of C-infinity-class, depending on the variable y only. Within this framework, we found a wide class of 2D gradient Ricci solitons and specialized our results to discuss some case studies. This research is a natural continuation, providing classification results for the subclass of steady gradient Ricci solitons.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Gradient h-almost Ricci solitons on warped product manifolds
    Shen, Dong
    Liu, Jiancheng
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 207
  • [42] Gradient Ricci-harmonic solitons on doubly warped product manifolds
    Karaca, Fatma
    Ozgur, Cihan
    FILOMAT, 2023, 37 (18) : 5969 - 5977
  • [43] Ricci flows and Ricci solitons on η-Einstein manifolds
    Bhattacharyya, Arindam
    De, Tapan
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 14 - 21
  • [44] Classification of expanding and steady Ricci solitons with integral curvature decay
    Catino, Giovanni
    Mastrolia, Paolo
    Monticelli, Dario D.
    GEOMETRY & TOPOLOGY, 2016, 20 (05) : 2665 - 2685
  • [45] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [46] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [47] η-RICCI SOLITONS IN LORENTZIAN α-MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 713 - 725
  • [48] Curvature Estimates for Four-Dimensional Gradient Steady Ricci Solitons
    Cao, Huai-Dong
    Cui, Xin
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 511 - 525
  • [49] Two-Dimensional Gradient Ricci Solitons Revisited
    Bernstein, Jacob
    Mettler, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) : 78 - 98
  • [50] An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons
    Richard H. Bamler
    Pak-Yeung Chan
    Zilu Ma
    Yongjia Zhang
    Peking Mathematical Journal, 2023, 6 (2) : 353 - 364