Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites

被引:77
|
作者
Nie, S. M. [1 ,2 ]
Song, Zhida [1 ,2 ]
Weng, Hongming [1 ,2 ,3 ]
Fang, Zhong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; LARGE-AREA; INSULATOR; PREDICTION; SCHEMES; PLANAR; LAYERS; BULK;
D O I
10.1103/PhysRevB.91.235434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on first-principles calculations, we have found that a family of two-dimensional transition-metal dichalcogenide haeckelites with square-octagonal lattice M X-2-4-8 (M = Mo, W and X = S, Se and Te) can host quantum spin Hall effect. The phonon spectra indicate that they are dynamically stable, and the largest band gap is predicted to be around 54 meV. These will pave the way for potential applications of topological insulators. We have also established a simple tight-binding model on a squarelike lattice to achieve a topologically nontrivial quantum state, which extends the study from honeycomb lattice to squarelike lattice and broadens the promising topological material systems greatly.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Design Guidelines for Two-Dimensional Transition Metal Dichalcogenide Alloys
    Silva, Andrea
    Cao, Jiangming
    Polcar, Tomas
    Kramer, Denis
    CHEMISTRY OF MATERIALS, 2022, 34 (23) : 10279 - 10290
  • [42] Epoxy Nanocomposites with Two-Dimensional Transition Metal Dichalcogenide Additives
    Eksik, Osman
    Gao, Jian
    Shojaee, S. Ali
    Thomas, Abhay
    Chow, Philippe
    Bartolucci, Stephen F.
    Lucca, Don A.
    Koratkar, Nikhil
    ACS NANO, 2014, 8 (05) : 5282 - 5289
  • [43] Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide
    Chou, Stanley S.
    Sai, Na
    Lu, Ping
    Coker, Eric N.
    Liu, Sheng
    Artyushkova, Kateryna
    Luk, Ting S.
    Kaehr, Bryan
    Brinker, C. Jeffrey
    NATURE COMMUNICATIONS, 2015, 6
  • [44] The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
    Chhowalla, Manish
    Shin, Hyeon Suk
    Eda, Goki
    Li, Lain-Jong
    Loh, Kian Ping
    Zhang, Hua
    NATURE CHEMISTRY, 2013, 5 (04) : 263 - 275
  • [45] Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications
    Hu, Yanling
    Huang, Ying
    Tan, Chaoliang
    Zhang, Xiao
    Lu, Qipeng
    Sindoro, Melinda
    Huang, Xiao
    Huang, Wei
    Wang, Lianhui
    Zhang, Hua
    MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (01) : 24 - 36
  • [46] Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets
    Brent, Jack R.
    Savjani, Nicky
    O'Brien, Paul
    PROGRESS IN MATERIALS SCIENCE, 2017, 89 : 411 - 478
  • [47] Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators
    Ma, Yandong
    Kou, Liangzhi
    Li, Xiao
    Dai, Ying
    Heine, Thomas
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [48] Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
    Knoerzer, J.
    Schuetz, M. J. A.
    Giedke, G.
    Wild, D. S.
    De Greve, K.
    Schmidt, R.
    Lukin, M. D.
    Cirac, J., I
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [49] Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures
    Price, Christopher C.
    Frey, Nathan C.
    Jariwala, Deep
    Shenoy, Vivek B.
    ACS NANO, 2019, 13 (07) : 8303 - 8311
  • [50] Functionalization of Two-Dimensional Transition-Metal Dichalcogenides
    Chen, Xin
    McDonald, Aidan R.
    ADVANCED MATERIALS, 2016, 28 (27) : 5738 - 5746