Many-Valued MinSAT Solving

被引:5
|
作者
Argelich, Josep [1 ]
Li, Chu Min [2 ]
Manya, Felip [3 ]
Zhu, Zhu [2 ]
机构
[1] Univ Lleida, Lleida, Spain
[2] Univ Picardie, MIS, F-80025 Amiens, France
[3] CSIC, IIIA, Madrid, Spain
关键词
D O I
10.1109/ISMVL.2014.14
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solving combinatorial optimization problems via their reduction to Boolean MinSAT is an emerging generic problem solving approach. In this paper we extend MinSAT with many-valued variables, and refer to the new formalism as Many-Valued MinSAT. For Many-Valued MinSAT, we describe an exact solver, Mv-MinSatz, which builds on the Boolean branch-and-bound solver MinSatz, and exploits the domain information of many-valued variables. Moreover, we also define efficient and robust encodings from optimization problems with many-valued variables to MinSAT. The empirical results provide evidence of the good performance of the new encodings, and of Many-Valued MinSAT over Boolean MinSAT on relevant optimization problems.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 50 条
  • [31] Many-Valued Logic '12
    Ferraioli, Anna Rita
    Gerla, Brunella
    Russo, Ciro
    Spada, Luca
    MATHEMATICA SLOVACA, 2015, 65 (04) : 723 - 724
  • [32] Many-valued quantum algebras
    Ivan Chajda
    Radomír Halaš
    Jan Kühr
    Algebra universalis, 2009, 60 : 63 - 90
  • [33] Calculi for Many-Valued Logics
    Michael Kaminski
    Nissim Francez
    Logica Universalis, 2021, 15 : 193 - 226
  • [34] A STUDY IN MANY-VALUED LOGIC
    HACKSTAFF, LH
    BOCHENSKI, JM
    STUDIES IN SOVIET THOUGHT, 1962, 2 (01): : 37 - 48
  • [35] Many-valued quantum algebras
    Chajda, Ivan
    Halas, Radomir
    Kuehr, Jan
    ALGEBRA UNIVERSALIS, 2009, 60 (01) : 63 - 90
  • [36] 2-VALUED AND MANY-VALUED LOGIC
    ZINOVEV, AA
    SOVIET STUDIES IN PHILOSOPHY, 1963, 2 (1-2): : 69 - 84
  • [37] ARITHMETICS OF MANY-VALUED NUMBERS
    KLAUA, D
    MATHEMATISCHE NACHRICHTEN, 1973, 57 (1-6) : 275 - 306
  • [38] MANY-VALUED COMPUTATIONAL LOGICS
    STACHNIAK, Z
    JOURNAL OF PHILOSOPHICAL LOGIC, 1989, 18 (03) : 257 - 274
  • [39] Many-valued equalities and their representations
    Höhle, U
    LOGICAL, ALGEBRAIC, ANALYTIC, AND PROBABILISTIC ASPECTS OF TRIANGULAR NORMS, 2005, : 301 - 319
  • [40] FUNCTIONAL MANY-VALUED RELATIONS
    Della Stella, M. E.
    Guido, C.
    MATHEMATICA SLOVACA, 2015, 65 (04) : 891 - 921