CHARACTERIZATIONS OF SOLUTION SETS OF A CLASS OF NONCONVEX SEMI-INFINITE PROGRAMMING PROBLEMS

被引:1
|
作者
Kim, D. S. [1 ]
Son, T. Q. [2 ]
机构
[1] Pukyong Natl Univ, Dept Appl Math, Pusan, South Korea
[2] Nhatrang Coll Educ, Dept Nat Sci, Nhatrang, Vietnam
关键词
Nonconvex semi-infinite programming; semiconvexity; solution sets; Lagrange multipliers; minimizing sequences; CONVEX-PROGRAMS; CONSTRAINT QUALIFICATIONS; EPSILON-OPTIMALITY; OPTIMIZATION; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with characterizations of solution sets of a class nonconvex problems with an infinite number of constraints. Assuming the functions to be locally Lipschitz semiconvex functions, several types of characterizations of solution sets of the problems are given.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [21] Weak Slater Qualification for Nonconvex Multiobjective Semi-infinite Programming
    Habibi, Sakineh
    Kanzi, Nader
    Ebadian, Ali
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02): : 417 - 424
  • [22] Weak Slater Qualification for Nonconvex Multiobjective Semi-infinite Programming
    Sakineh Habibi
    Nader Kanzi
    Ali Ebadian
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 417 - 424
  • [23] Recent advances in nonconvex semi-infinite programming: Applications and algorithms
    Djelassi, Hatim
    Mitsos, Alexander
    Stein, Oliver
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2021, 9
  • [24] Duality for nonsmooth semi-infinite programming problems
    S. K. Mishra
    M. Jaiswal
    Le Thi Hoai An
    Optimization Letters, 2012, 6 : 261 - 271
  • [25] Duality for nonsmooth semi-infinite programming problems
    Mishra, S. K.
    Jaiswal, M.
    Le Thi Hoai An
    OPTIMIZATION LETTERS, 2012, 6 (02) : 261 - 271
  • [26] Semi-infinite programming and applications to minimax problems
    Zakovic, S
    Rustem, B
    ANNALS OF OPERATIONS RESEARCH, 2003, 124 (1-4) : 81 - 110
  • [27] Semi-Infinite Programming and Applications to Minimax Problems
    Stanislav Žaković
    Berc Rustem
    Annals of Operations Research, 2003, 124 : 81 - 110
  • [28] ON STABLE FEASIBLE SETS IN GENERALIZED SEMI-INFINITE PROGRAMMING
    Guenzel, Harald
    Jongen, Hubertus Th.
    Rueckmann, Jan-J.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) : 644 - 654
  • [29] OPTIMALITY CONDITIONS IN NONCONVEX SEMI-INFINITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Piao, Guang-Ri
    Jiao, Liguo
    Kim, Do Sang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (01) : 167 - 175
  • [30] A study of one class of NLP problems arising in parametric semi-infinite programming
    Kostyukova, O. I.
    Tchemisova, T. V.
    Kurdina, M. A.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (06): : 1218 - 1243