Approximation of linear hyperbolic interface problems on finite element: Some new estimates

被引:2
|
作者
Adewole, Matthew O. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
关键词
Hyperbolic interface; Fully discrete; Almost optimal; Discrete maximum principle; DOMAIN DECOMPOSITION; PARABOLIC PROBLEMS; GALERKIN METHODS; CONVERGENCE; SEMIDISCRETE; EQUATIONS; FEM;
D O I
10.1016/j.amc.2018.12.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element solution of a linear hyperbolic interface problem with time discretization based on 3-step implicit scheme is proposed. Quasi-uniform triangular elements are used for the spatial discretization. With low regularity assumption on the solution across the interface, the stability of the scheme is established and almost optimal convergence rates in L-2(Omega) and H-1(Omega) norms are obtained. In terms of matrices arising in the scheme, we show that the discrete solution satisfies the maximum principle under certain conditions on the mesh parameter h and time step k. Numerical experiments are presented to support the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [21] A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems
    Shaw, S
    Whiteman, JR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) : 5551 - 5572
  • [22] Approximation capabilities of immersed finite element spaces for elasticity Interface problems
    Guo, Ruchi
    Lin, Tao
    Lin, Yanping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1243 - 1268
  • [23] An analysis of some high accuracy finite element methods for hyperbolic problems
    Zhou, AH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) : 1014 - 1028
  • [24] Error estimates for the finite element approximation of linear elastic equations in an unbounded domain
    Han, HD
    Bao, WZ
    MATHEMATICS OF COMPUTATION, 2001, 70 (236) : 1437 - 1459
  • [25] Robust error estimates for the finite element approximation of elliptic optimal control problems
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1370 - 1381
  • [26] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    LUO XianBing
    CHEN YanPing
    HUANG YunQing
    ScienceChina(Mathematics), 2013, 56 (05) : 902 - 915
  • [27] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914
  • [28] ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR NONLINEAR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Li, Lin
    Feng, Yuming
    Cao, Longzhou
    Zhang, Wei
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 70 - 84
  • [29] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    XianBing Luo
    YanPing Chen
    YunQing Huang
    Science China Mathematics, 2013, 56 : 901 - 914
  • [30] SOME NEW ERROR ESTIMATES FOR FINITE ELEMENT METHODS FOR SECOND ORDER HYPERBOLIC EQUATIONS USING THE NEWMARK METHOD
    Bradji, Abdallah
    Fuhrmann, Juergen
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 125 - 136