FLOWS AND INVARIANCE FOR DEGENERATE ELLIPTIC OPERATORS

被引:4
|
作者
ter Elst, A. F. M. [1 ]
Robinson, Derek W. [2 ]
Sikora, Adam [3 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
关键词
degenerate elliptic operator; flow; invariance;
D O I
10.1017/S1446788711001315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a sub-Markovian semigroup on L-2(R-d) generated by a self-adjoint, second-order, divergence-form, elliptic operator H with W-1,W-infinity(R-d) coefficients c(kl), and let Omega be an open subset of R-d. We prove that if either C (Rd) is a cote of the semigroup generator of the consistent semigroup on Lp(Rd) for some p is an element of [1, infinity] or Omega has a locally Lipschitz boundary, then S leaves L-2(Omega) invariant if and only if it is invariant under the flows generated by the vector fields Sigma(d)(l=1) c(kl)partial derivative(l) for all k. Further, for all p is an element of [1, 2] we derive sufficient conditions on the coefficients for the core property to be satisfied. Then by combination of these results we obtain various examples of invariance in terms of boundary degeneracy both for Lipschitz domains and domains with fractal boundaries.
引用
收藏
页码:317 / 339
页数:23
相关论文
共 50 条
  • [21] Invariant Measures Associated to Degenerate Elliptic Operators
    Cannarsa, P.
    Da Prato, G.
    Frankowska, H.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) : 53 - 78
  • [22] The Harnack Inequality for a Class of Degenerate Elliptic Operators
    Hamel, Francois
    Zlatos, Andrej
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (16) : 3732 - 3743
  • [23] Conical square functions for degenerate elliptic operators
    Chen, Li
    Maria Martell, Jose
    Prisuelos-Arribas, Cruz
    ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (01) : 75 - 113
  • [24] Passive advection and the degenerate elliptic operators Mn
    Hakulinen, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (01) : 1 - 45
  • [25] Feller semigroups generated by degenerate elliptic operators
    Taira K.
    Favini A.
    Romanelli S.
    Semigroup Forum, 2000, 60 (2) : 296 - 309
  • [26] HYPOELLIPTICITY FOR INFINITELY DEGENERATE ELLIPTIC-OPERATORS
    MORIMOTO, Y
    OSAKA JOURNAL OF MATHEMATICS, 1987, 24 (01) : 13 - 35
  • [27] Analysis of degenerate elliptic operators of Grusin type
    Robinson, Derek W.
    Sikora, Adam
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (03) : 475 - 508
  • [28] Analysis of degenerate elliptic operators of Grušin type
    Derek W. Robinson
    Adam Sikora
    Mathematische Zeitschrift, 2008, 260 : 475 - 508
  • [29] ON HEAT KERNELS OF A CLASS OF DEGENERATE ELLIPTIC OPERATORS
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    Li, Yutian
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (02) : 309 - 340
  • [30] Generation of analytic semigroups by degenerate elliptic operators
    Ugo Gianazza
    Vincenzo Vespri
    Nonlinear Differential Equations and Applications NoDEA, 1997, 4 : 305 - 324