FLOWS AND INVARIANCE FOR DEGENERATE ELLIPTIC OPERATORS

被引:4
|
作者
ter Elst, A. F. M. [1 ]
Robinson, Derek W. [2 ]
Sikora, Adam [3 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
关键词
degenerate elliptic operator; flow; invariance;
D O I
10.1017/S1446788711001315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a sub-Markovian semigroup on L-2(R-d) generated by a self-adjoint, second-order, divergence-form, elliptic operator H with W-1,W-infinity(R-d) coefficients c(kl), and let Omega be an open subset of R-d. We prove that if either C (Rd) is a cote of the semigroup generator of the consistent semigroup on Lp(Rd) for some p is an element of [1, infinity] or Omega has a locally Lipschitz boundary, then S leaves L-2(Omega) invariant if and only if it is invariant under the flows generated by the vector fields Sigma(d)(l=1) c(kl)partial derivative(l) for all k. Further, for all p is an element of [1, 2] we derive sufficient conditions on the coefficients for the core property to be satisfied. Then by combination of these results we obtain various examples of invariance in terms of boundary degeneracy both for Lipschitz domains and domains with fractal boundaries.
引用
收藏
页码:317 / 339
页数:23
相关论文
共 50 条
  • [1] ON SECTORIALITY OF DEGENERATE ELLIPTIC OPERATORS
    Do, Tan Duc
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (03) : 689 - 710
  • [2] Uniqueness properties of degenerate elliptic operators
    El Maati Ouhabaz
    Derek W. Robinson
    Journal of Evolution Equations, 2012, 12 : 647 - 673
  • [3] ON TYPES OF DEGENERATE ELLIPTIC-OPERATORS
    LEVENDORSKII, SZ
    MATHEMATICS OF THE USSR-SBORNIK, 1990, 66 (02): : 523 - 540
  • [4] Uniqueness properties of degenerate elliptic operators
    Ouhabaz, El Maati
    Robinson, Derek W.
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (03) : 647 - 673
  • [5] Invertibility for a class of degenerate elliptic operators
    Delgado, Julio
    Zamudio, Alex M.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2010, 1 (02) : 207 - 231
  • [6] Invertibility for a class of degenerate elliptic operators
    Julio Delgado
    Alex M. Zamudio
    Journal of Pseudo-Differential Operators and Applications, 2010, 1 : 207 - 231
  • [7] Degenerate elliptic operators with coefficients in EXP
    Formica, MR
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4A (03): : 451 - 454
  • [8] Markov uniqueness of degenerate elliptic operators
    Robinson, Derek W.
    Sikora, Adam
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (03) : 683 - 710
  • [9] Degenerate elliptic operators in one dimension
    Derek W. Robinson
    Adam Sikora
    Journal of Evolution Equations, 2010, 10 : 731 - 759
  • [10] PARTIAL HYPOELLIPTICITY FOR ELLIPTIC DEGENERATE OPERATORS
    ROLLAND, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 885 - 888