Resonance Modes of Tall Plasmonic Nanostructures and Their Applications for Biosensing

被引:3
|
作者
Soehartono, Alana M. [1 ]
Tobing, Landobasa Y. M. [1 ]
Mueller, Aaron D. [1 ]
Yong, Ken-Tye [1 ]
Zhang, Dao Hua [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Plasmonics; electrodeposition; nanofabrication; biosensing; nanophotonics; SPLIT-RING RESONATORS; SENSITIVITY; ARRAYS;
D O I
10.1109/JQE.2019.2958362
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The collective oscillation of plasmons in metallic nanostructures generates localized surface plasmons (LSP), which are responsive to their surrounding dielectric environment and can be used for low-cost, label-free sensing platforms. However, the inherently short evanescent decay field saturates the optical response within 10-30 nm of the metal surface, hindering multi-layered functionalization strategies typically used for specific binding due to its limited surface proximity. In this work, we propose the use of tall nanostructures to engineer the plasmonic response for biosensing applications. The resonance mode characteristics are investigated, where the emergence of hybrid modes is found to arise from the decoupling of localized plasmon modes at increasing antenna height. Using high aspect ratio plasmonic nanostructures, we demonstrate its viability with up to 4.3x higher sensitivity and 18.4x higher figure of merit within the visible range. Coupled with a cost-effective fabrication method, the height provides an additional degree of freedom for tailoring the optical spectrum.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Photonic crystal nanostructures for optical biosensing applications
    Dorfner, D.
    Zabel, T.
    Hurlimann, T.
    Hauke, N.
    Frandsen, L.
    Rant, U.
    Abstreiter, G.
    Finley, J.
    BIOSENSORS & BIOELECTRONICS, 2009, 24 (12): : 3688 - 3692
  • [32] Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing
    Zhang, Shuaidi
    Geryak, Ren
    Geldmeier, Jeffrey
    Kim, Sunghan
    Tsukruk, Vladimir V.
    CHEMICAL REVIEWS, 2017, 117 (20) : 12942 - 13038
  • [33] Vertically stacked Si nanostructures for biosensing applications
    Buitrago, Elizabeth
    Fernandez-Bolanos, M.
    Ionescu, A. M.
    MICROELECTRONIC ENGINEERING, 2012, 97 : 345 - 348
  • [34] Plasmonic resonance-linewidth shrinkage to boost biosensing
    MIN GAO
    WEIMIN YANG
    ZHENGYING WANG
    SHAOWEI LIN
    JINFENG ZHU
    ZHILIN YANG
    Photonics Research, 2020, 8 (07) : 1226 - 1235
  • [35] Surface Plasmon Resonance Sensing Periodic metallic nanostructures for high-sensitivity biosensing applications
    Lee, Kuang-Li
    Wei, Pei-Kuen
    IEEE NANOTECHNOLOGY MAGAZINE, 2016, 10 (01) : 16 - 23
  • [36] Plasmonic Nanostructures for Bioanalytical Applications of SERS
    Kahraman, Mehmet
    Wachsmann-Hogiu, Sebastian
    PLASMONICS IN BIOLOGY AND MEDICINE XIII, 2016, 9724
  • [37] Plasmonic Manipulation and Applications in Nanostructures/Nanomaterials
    Lu, Hua
    Wang, Ruolan
    Yue, Zengqi
    Zhao, Jianlin
    2018 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO) - CONFERENCE PROCEEDINGS, 2018, : 1 - 5
  • [38] Quantitative Mid-Infrared Plasmonic Biosensing on Scalable Graphene Nanostructures
    Bareza, Nestor, Jr.
    Wajs, Ewelina
    Paulillo, Bruno
    Tullila, Antti
    Jaatinen, Hannakaisa
    Milani, Roberto
    Dore, Camilla
    Mihi, Agustin
    Nevanen, Tarja K.
    Pruneri, Valerio
    ADVANCED MATERIALS INTERFACES, 2023, 10 (02):
  • [39] Shell-Isolated Plasmonic Nanostructures for Biosensing, Catalysis, and Advanced Nanoelectronics
    Li, Chuanping
    Jin, Yongdong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (07)
  • [40] Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures
    Gjonaj, B.
    Aulbach, J.
    Johnson, P. M.
    Mosk, A. P.
    Kuipers, L.
    Lagendijk, A.
    NANO LETTERS, 2012, 12 (02) : 546 - 550