Inverse fixed energy scattering problem for the generalized nonlinear Schrodinger operator

被引:6
|
作者
Serov, Valery [1 ]
机构
[1] Univ Oulu, Dept Math Sci, FIN-90014 Oulu, Finland
基金
芬兰科学院;
关键词
BORG-LEVINSON THEOREM; SINGULAR POTENTIALS; GLOBAL UNIQUENESS; CAUCHY DATA; SATURATION;
D O I
10.1088/0266-5611/28/2/025002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse fixed energy scattering problem for the generalized nonlinear Schrodinger operator. We prove that in a three-dimensional case, the unknown compactly supported potentials from L-p space can be uniquely obtained by the scattering data with fixed positive energy (by the knowledge of the scattering amplitude with the fixed spectral parameter). The proof is based on the new estimates for the Green-Faddeev function in L-infinity(R-n) space for n = 2 and 3. The results may have applications in nonlinear optics for the saturation model. In particular, the constant coefficients of this model can be uniquely reconstructed by the scattering data with fixed energy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An inverse spectral problem for a fractional Schrodinger operator
    Choulli, Mourad
    [J]. ARCHIV DER MATHEMATIK, 2023, 120 (04) : 395 - 402
  • [32] Inverse problem for the Schrodinger operator in an unbounded strip
    Cardoulis, L.
    Cristofol, M.
    Gaitan, P.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (02): : 127 - 146
  • [33] Inverse problem for the Schrodinger operator in an unbounded strip
    Cardoulis, Laure
    Cristofol, Michel
    Gaitan, Patricia
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) : 635 - 640
  • [34] Dynamical inverse problem for the discrete Schrodinger operator
    Mikhaylov, A. S.
    Mikhaylov, V. S.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2016, 7 (05): : 842 - 853
  • [35] NUMERICAL COMPUTATIONS IN INVERSE-SCATTERING PROBLEM AT FIXED ENERGY
    SABATIER, PC
    QUYENVAN.F
    [J]. PHYSICAL REVIEW D, 1971, 4 (01): : 127 - &
  • [36] THE INVERSE PROBLEM OF QUANTUM-THEORY OF SCATTERING WITH FIXED ENERGY
    MALYAROV, VV
    PIVOVARCHIK, VN
    [J]. UKRAINSKII FIZICHESKII ZHURNAL, 1982, 27 (05): : 775 - 777
  • [37] Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line
    Horvath, Miklos
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 5161 - 5177
  • [38] INVERSE PROBLEM FOR POTENTIAL SCATTERING AT FIXED ENERGY .2.
    LIPPERHEIDE, R
    FIEDELDEY, H
    [J]. ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1981, 301 (01): : 81 - 89
  • [39] INVERSE SCATTERING PROBLEM AT FIXED ENERGY FOR A SOLVABLE CLASS OF POTENTIALS
    LEEB, H
    SCHNIZER, WA
    FIEDELDEY, H
    SOFIANOS, SA
    LIPPERHEIDE, R
    [J]. INVERSE PROBLEMS, 1989, 5 (05) : 817 - 830
  • [40] Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering
    Stefanov, P
    Uhlmann, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1351 - 1354