Control-enabled Observability in Visual-Inertial Odometry

被引:0
|
作者
Bai, He [1 ]
Taylor, Clark N. [2 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] US Air Force Res Lab, Sensors Directorate, Washington, DC 20330 USA
关键词
CALIBRATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual-inertial odometry (VIO) is a nonlinear estimation problem where control inputs, such as acceleration and angular velocity, play a significant role in the estimation performance. In this paper, we examine effects of controls on the VIO problem. We first analyze the effects of acceleration and angular velocity inputs on state observability of the VIO problem. Representing the vehicle dynamics and the measurement equation in the line of sight coordinates, we prove observability properties for several VIO scenarios, including constant acceleration with no rotation and biased acceleration measurements. We next consider how the acceleration magnitude impacts the estimation performance. Using a planar example and Monte-Carlo simulations, we demonstrate that the estimation accuracy improves as the acceleration magnitude increases. We also show an interesting fact that deceleration along the velocity direction yields better performance than acceleration with the same magnitude for the same amount of time.
引用
收藏
页码:822 / 829
页数:8
相关论文
共 50 条
  • [21] Challenges of Dynamic Environment for Visual-Inertial Odometry
    Zhu, Tao
    Ma, Huimin
    2018 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2018, : 82 - 86
  • [22] EqVIO: An Equivariant Filter for Visual-Inertial Odometry
    van Goor, Pieter
    Mahony, Robert
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (05) : 3567 - 3585
  • [23] Edge-based Visual-Inertial Odometry
    Yu, Hongsheng
    Mourikis, Anastasios I.
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6670 - 6677
  • [24] Monocular Visual-Inertial Odometry with Planar Regularities
    Chen, Chuchu
    Geneva, Patrick
    Peng, Yuxiang
    Lee, Woosik
    Huang, Guoquan
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6224 - 6231
  • [25] A Fast Stereo Visual-Inertial Odometry for MAVs
    Bi, Yingcai
    Lai, Shupeng
    Chen, Ben M.
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 265 - 270
  • [26] Visual-Inertial and Leg Odometry Fusion for Dynamic Locomotion
    Dhedin, Victor
    Li, Haolong
    Khorshidi, Shahram
    Mack, Lukas
    Ravi, Adithya Kumar Chinnakkonda
    Meduri, Avadesh
    Shah, Paarth
    Grimminger, Felix
    Righetti, Ludovic
    Khadiv, Majid
    Stueckler, Joerg
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9966 - 9972
  • [27] Direct Sparse Stereo Visual-Inertial Global Odometry
    Wang, Ziqiang
    Li, Mei
    Zhou, Dingkun
    Zheng, Ziqiang
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 14403 - 14409
  • [28] Fast Visual-Inertial Odometry with Adaptive Feature Coupling
    Ma, Zekun
    Xiao, Jiazheng
    Wang, Fei
    Jiang, Peilin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT VI, 2025, 15206 : 171 - 186
  • [29] Stereo Event-Based Visual-Inertial Odometry
    Wang, Kunfeng
    Zhao, Kaichun
    Lu, Wenshuai
    You, Zheng
    SENSORS, 2025, 25 (03)
  • [30] Using Vanishing Points to Improve Visual-Inertial Odometry
    Camposeco, Federico
    Pollefeys, Marc
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5219 - 5225