Control-enabled Observability in Visual-Inertial Odometry

被引:0
|
作者
Bai, He [1 ]
Taylor, Clark N. [2 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] US Air Force Res Lab, Sensors Directorate, Washington, DC 20330 USA
关键词
CALIBRATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual-inertial odometry (VIO) is a nonlinear estimation problem where control inputs, such as acceleration and angular velocity, play a significant role in the estimation performance. In this paper, we examine effects of controls on the VIO problem. We first analyze the effects of acceleration and angular velocity inputs on state observability of the VIO problem. Representing the vehicle dynamics and the measurement equation in the line of sight coordinates, we prove observability properties for several VIO scenarios, including constant acceleration with no rotation and biased acceleration measurements. We next consider how the acceleration magnitude impacts the estimation performance. Using a planar example and Monte-Carlo simulations, we demonstrate that the estimation accuracy improves as the acceleration magnitude increases. We also show an interesting fact that deceleration along the velocity direction yields better performance than acceleration with the same magnitude for the same amount of time.
引用
收藏
页码:822 / 829
页数:8
相关论文
共 50 条
  • [1] Control-enabled Observability and Sensitivity Functions in Visual-Inertial Odometry
    He Bai
    Clark N. Taylor
    Journal of Intelligent & Robotic Systems, 2019, 93 : 289 - 301
  • [2] Control-enabled Observability and Sensitivity Functions in Visual-Inertial Odometry
    Bai, He
    Taylor, Clark N.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 93 (1-2) : 289 - 301
  • [3] Observability Analysis of IMU Intrinsic Parameters in Stereo Visual-Inertial Odometry
    Jung, Jae Hyung
    Heo, Sejong
    Park, Chan Gook
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 7530 - 7541
  • [4] Robocentric Visual-Inertial Odometry
    Huai, Zheng
    Huang, Guoquan
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6319 - 6326
  • [5] Robocentric visual-inertial odometry
    Huai, Zheng
    Huang, Guoquan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (07): : 667 - 689
  • [6] Cooperative Visual-Inertial Odometry
    Zhu, Pengxiang
    Yang, Yulin
    Ren, Wei
    Huang, Guoquan
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13135 - 13141
  • [7] Compass aided visual-inertial odometry
    Wang, Yandong
    Zhang, Tao
    Wang, Yuanchao
    Ma, Jingwei
    Li, Yanhui
    Han, Jingzhuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 101 - 115
  • [8] Information Sparsification in Visual-Inertial Odometry
    Hsiung, Jerry
    Hsiao, Ming
    Westman, Eric
    Valencia, Rafael
    Kaess, Michael
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1146 - 1153
  • [9] A Partial Sparsification Scheme for Visual-Inertial Odometry
    Zhu, Zhikai
    Wang, Wei
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1983 - 1989
  • [10] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE Access, 2022, 10 : 103975 - 103986