A Method for Short-Term Wind Power Prediction With Multiple Observation Points

被引:122
|
作者
Khalid, Muhammad [1 ]
Savkin, Andrey V. [1 ]
机构
[1] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Adaptive filtering; networked systems; prediction; renewable energy; wind power; NEURAL-NETWORKS; ENERGY; GENERATION; SYSTEMS; MODELS; SPEED;
D O I
10.1109/TPWRS.2011.2160295
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method to improve the short-term wind power prediction at a given turbine using information from numerical weather prediction and from multiple observation points, which correspond to the locations of nearby turbines at a particular wind farm site. The prediction of wind power is achieved in two stages; in the first stage wind speed is predicted using our proposed method. In the second stage, the wind speed to output power conversion is accomplished using power curve model. The proposed wind power prediction method is tested using real measurements and NWP data from one of the wind farm sites in Australia. The performance is compared with the persistence and Grey predictor model in terms of Mean Absolute Error and Root Mean Square Error.
引用
收藏
页码:579 / 586
页数:8
相关论文
共 50 条
  • [41] Short-term wind power combination forecasting method based on wind speed correction of numerical weather prediction
    Wang, Siyuan
    Liu, Haiguang
    Yu, Guangzheng
    [J]. FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [42] Short-term Wind Power Prediction Method Based on UAV Patrol and Deep Confidence Network
    Yiming, Zhang
    Li, Cheng
    [J]. Distributed Generation and Alternative Energy Journal, 2022, 37 (06): : 1739 - 1754
  • [43] A short-term wind power prediction method based on deep learning and multistage ensemble algorithm
    Peng, Xiaosheng
    Li, Cong
    Jia, Shiyuan
    Zhou, Liangsong
    Wang, Bo
    Che, Jianfeng
    [J]. WIND ENERGY, 2022, 25 (09) : 1610 - 1625
  • [44] A short-term wind power prediction method based on dynamic and static feature fusion mining
    Yang, Mao
    Wang, Da
    Zhang, Wei
    [J]. ENERGY, 2023, 280
  • [45] Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM
    Sun, Hongbin
    Cui, Qing
    Wen, Jingya
    Kou, Lei
    Ke, Wende
    [J]. ENERGY REPORTS, 2024, 11 : 1487 - 1502
  • [46] Short-Term Wind Power Forecasting Using the Hybrid Method
    Chang, Wen-Yeau
    [J]. INTERNATIONAL CONFERENCE ON FRONTIERS OF ENVIRONMENT, ENERGY AND BIOSCIENCE (ICFEEB 2013), 2013, : 62 - 67
  • [47] Short-Term Wind Power Prediction Based on Combinatorial Neural Networks
    Kari, Tusongjiang
    Guoliang, Sun
    Kesong, Lei
    Xiaojing, Ma
    Xian, Wu
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02): : 1437 - 1452
  • [48] Prediction of short-term wind power based on ESN improved by VMD
    Gao Xu
    Tang Zhenhao
    Han Hongzhi
    Bu Bing
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 674 - 678
  • [49] Short-Term Prediction of Wind Farm Power: A Data Mining Approach
    Kusiak, Andrew
    Zheng, Haiyang
    Song, Zhe
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (01) : 125 - 136
  • [50] Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (03) : 602 - 610