FROM THE WIGNER FUNCTION TO THE s-ORDERED PHASE-SPACE DISTRIBUTION VIA A GAUSSIAN NOISE CHANNEL

被引:0
|
作者
Zhang, Yue [1 ,2 ]
Luo, Shunlong [3 ,4 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
[2] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Wigner function; s-ordered phase-space distribution; Gaussian noise channel; noise parameter; nonclassicality; QUANTUM; STATES; INFORMATION; COHERENT; FIDELITY;
D O I
10.1134/S0040577922030126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various phase-space distributions, from the celebrated Wigner function, to the Husimi Q function and the Glauber-Sudarshan P distribution, have played an interesting and important role in the phase-space formulation of quantum mechanics in general, and quantum optics in particular. A unified approach to all these distributions based on the notion of the 8-ordered phase-space distribution was introduced by Cahill and Glauber. With the intention of illuminating the physical meaning of the parameter s, we interpret the 8-ordered phase-space distribution as the Wigner function of a state under the Gaussian noise channel, and thus reveal an intrinsic connection between the 8-ordered phase-space distribution and the Gaussian noise channel, which yields a physical insight into the 8-ordered phase-space distribution. In this connection, the parameter -s/2 (rather than the original s) acquires the role of the noise occurring in the Gaussian noise channel. An alternative representation of the Gaussian noise channel as the scaling-measurement preparation in a coherent states is illuminated. Furthermore, by exploiting the freedom in the parameter s, we introduce a computable and experimentally testable quantifier for optical nonclassicality, reveal its basic properties, and illustrate it by typical examples. A simple and convenient criterion for optical nonclassicality in terms of the 8-ordered phase-space distribution is derived.
引用
收藏
页码:425 / 441
页数:17
相关论文
共 50 条
  • [31] Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions
    Kim, Hwi
    Min, Sung-Wook
    Lee, Byoungho
    Poon, Ting-Chung
    APPLIED OPTICS, 2008, 47 (19) : D164 - D175
  • [32] How to calculate the Wigner function from phase space
    Hug, M
    Menke, C
    Schleich, WP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : L217 - L224
  • [33] Wigner function for a generalized model of a parametric oscillator: Phase-space tristability, competition and nonclassical effects
    Kheruntsyan, KV
    Krahmer, DS
    Kryuchkyan, GY
    Petrossian, KG
    OPTICS COMMUNICATIONS, 1997, 139 (1-3) : 157 - 164
  • [36] Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium
    Yura, HT
    Thrane, L
    Andersen, PE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2464 - 2474
  • [37] A lower bound on the Milky Way mass from general phase-space distribution function models
    Bratek, Lukasz
    Sikora, Szymon
    Jalocha, Joanna
    Kutschera, Marek
    ASTRONOMY & ASTROPHYSICS, 2014, 562
  • [38] Chaos and quantum-classical correspondence via phase-space distribution functions
    Gong, JB
    Brumer, P
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [39] SCALE CONVERSION OF PHASE-SPACE AND INTEGRAL-EQUATIONS FOR RADIAL FUNCTION OF DISTRIBUTION
    KASIMOV, NS
    SYSOEV, VM
    ZHURNAL FIZICHESKOI KHIMII, 1991, 65 (03): : 819 - 823
  • [40] PHASE-SPACE DISTRIBUTION FUNCTION FORMULATION OF THE METHOD OF REACTIVE FLUX - MEMORY FRICTION
    KOHEN, D
    TANNOR, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (14): : 6013 - 6020