FROM THE WIGNER FUNCTION TO THE s-ORDERED PHASE-SPACE DISTRIBUTION VIA A GAUSSIAN NOISE CHANNEL

被引:0
|
作者
Zhang, Yue [1 ,2 ]
Luo, Shunlong [3 ,4 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
[2] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Wigner function; s-ordered phase-space distribution; Gaussian noise channel; noise parameter; nonclassicality; QUANTUM; STATES; INFORMATION; COHERENT; FIDELITY;
D O I
10.1134/S0040577922030126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various phase-space distributions, from the celebrated Wigner function, to the Husimi Q function and the Glauber-Sudarshan P distribution, have played an interesting and important role in the phase-space formulation of quantum mechanics in general, and quantum optics in particular. A unified approach to all these distributions based on the notion of the 8-ordered phase-space distribution was introduced by Cahill and Glauber. With the intention of illuminating the physical meaning of the parameter s, we interpret the 8-ordered phase-space distribution as the Wigner function of a state under the Gaussian noise channel, and thus reveal an intrinsic connection between the 8-ordered phase-space distribution and the Gaussian noise channel, which yields a physical insight into the 8-ordered phase-space distribution. In this connection, the parameter -s/2 (rather than the original s) acquires the role of the noise occurring in the Gaussian noise channel. An alternative representation of the Gaussian noise channel as the scaling-measurement preparation in a coherent states is illuminated. Furthermore, by exploiting the freedom in the parameter s, we introduce a computable and experimentally testable quantifier for optical nonclassicality, reveal its basic properties, and illustrate it by typical examples. A simple and convenient criterion for optical nonclassicality in terms of the 8-ordered phase-space distribution is derived.
引用
收藏
页码:425 / 441
页数:17
相关论文
共 50 条
  • [1] Revealing nonclassicality via s-ordered phase-space distribution
    Yue Zhang
    Shuheng Liu
    Boxuan Jing
    Qiongyi He
    Shunlong Luo
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [2] Revealing nonclassicality via s-ordered phase-space distribution
    Zhang, Yue
    Liu, Shuheng
    Jing, Boxuan
    He, Qiongyi
    Luo, Shunlong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (11)
  • [3] Revealing nonclassicality via s-ordered phase-space distribution
    Yue Zhang
    Shuheng Liu
    Boxuan Jing
    Qiongyi He
    Shunlong Luo
    Science China(Physics,Mechanics & Astronomy), 2022, (11) : 94 - 100
  • [4] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [6] Wigner phase-space distribution function for the hydrogen atom
    Nouri, S
    PHYSICAL REVIEW A, 1998, 57 (03): : 1526 - 1528
  • [7] WIGNER DISTRIBUTION FUNCTION AND PHASE-SPACE FORMULATION OF QUANTUM COSMOLOGY
    CALZETTA, E
    HU, BL
    PHYSICAL REVIEW D, 1989, 40 (02): : 380 - 389
  • [8] NECESSARY AND SUFFICIENT CONDITIONS FOR A PHASE-SPACE FUNCTION TO BE A WIGNER DISTRIBUTION
    NARCOWICH, FJ
    OCONNELL, RF
    PHYSICAL REVIEW A, 1986, 34 (01): : 1 - 6
  • [9] Comment on "Wigner phase-space distribution function for the hydrogen atom"
    Dahl, JP
    Springborg, M
    PHYSICAL REVIEW A, 1999, 59 (05): : 4099 - 4100
  • [10] On constructing the wave function of a quantum particle from its Wigner phase-space distribution function
    Leavens, CR
    Mayato, RS
    PHYSICS LETTERS A, 2001, 280 (04) : 163 - 172