HIGH RESOLUTION SATELLITE PRECIPITATION ESTIMATE USING CLUSTER ENSEMBLE CLOUD CLASSIFICATION

被引:2
|
作者
Mahrooghy, Majid [1 ,2 ]
Younan, Nicolas H. [1 ,2 ]
Anantharaj, Valentine G. [3 ]
Aanstoos, James [2 ]
机构
[1] Mississippi State Univ, Dept Elect Engn, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS USA
[3] Natl Ctr Computat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
Clustering method; neural networks; feature extraction; image texture analysis; CONSENSUS; PARTITIONS; MODELS; SYSTEM;
D O I
10.1109/IGARSS.2011.6049746
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The link-based cluster ensemble (LCE) method is applied to a high resolution satellite precipitation estimation (HSPE) algorithm, a modified form of the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification (PERSIANN-CCS) algorithm. The HSPE involves the following four steps: 1) segmentation of infrared cloud images into patches; 2) cloud patch feature extraction; 3) clustering and classification of cloud patches using cluster ensemble technique; and 4) dynamic application of brightness temperature (Tb) and rain rate relationships, derived using satellite observations. The LCE method combines multiple data partitions from different clustering in order to cluster the cloud patches. The results show that using the cluster ensemble increase the performance of rainfall estimates if compared to the HSPE algorithm using Self Organizing Map (SOM). The Heidke Skill Score (HSS) is improved 5% to 7% at medium and high level of rainfall thresholds.
引用
收藏
页码:2645 / 2648
页数:4
相关论文
共 50 条
  • [31] High Resolution Satellite Classification with Graph Cut Algorithms
    Lopez, Adrian A.
    Malpica, Jose A.
    ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 : 105 - 112
  • [32] A Very High Resolution Satellite Imagery Classification Algorithm
    Shedlovska, Y. I.
    Hnatushenko, V. V.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 654 - 657
  • [33] Textural classification of high resolution digital satellite imagery
    Shaban, MA
    Dikshit, O
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 2590 - 2592
  • [34] A design of category classification system for high resolution satellite
    Nakano, M
    Kalpoma, KA
    Nakamura, T
    Kudoh, J
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4516 - 4518
  • [35] High-resolution precipitation prediction in Bangladesh via ensemble learning
    Wu, Yichen
    Yang, Jiaxin
    Das, Lipon Chandra
    Zhang, Zhihua
    Crabbe, M. James C.
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2024, 33 (03) : 223 - 234
  • [36] Evaluation of high-resolution precipitation estimate over the Amazon Basin
    Santos e Silva, Claudio Moises
    de Freitas, Saulo Ribeiro
    Gielow, Ralf
    de Barros, Sheila Santana
    ATMOSPHERIC SCIENCE LETTERS, 2009, 10 (04): : 273 - 278
  • [37] Improve the downscaling accuracy of high-resolution precipitation field using classification mask
    Tie, Ruian
    Shi, Chunxiang
    Li, Meng
    Gu, Xiang
    Ge, Lingling
    Shen, Zhanfei
    Liu, Jieli
    Zhou, Tao
    Chen, Xiaojian
    ATMOSPHERIC RESEARCH, 2024, 310
  • [38] High-resolution typhoon precipitation integrations using satellite infrared observations and multisource data
    Zhao, You
    Liu, Chao
    Di, Di
    Ma, Ziqiang
    Tang, Shihao
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (09) : 2791 - 2805
  • [39] Ensemble Learning Based Classification of High Resolution SAR Images
    Turkmenli, Ilter
    Kayabol, Koray
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [40] Crop Classification using Biologically-inspired Techniques with High Resolution Satellite Image
    Omkar, S. N.
    Senthilnath, J.
    Mudigere, Dheevatsa
    Kumar, M. Manoj
    PHOTONIRVACHAK-JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2008, 36 (02): : 175 - 182