Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator

被引:47
|
作者
Kadji, H. G. Enjieu [1 ,2 ]
Nbendjo, B. R. Nana [2 ]
Orou, J. B. Chabi [1 ]
Talla, P. K. [3 ]
机构
[1] Inst Math & Phys Sci, Porto Novo, Benin
[2] Univ Yaounde, Fac Sci, Lab Modelling & Simulat Engn Biol Phys, Yaounde, Cameroon
[3] Univ Dschang, Fac Sci, Dschang, Cameroon
关键词
D O I
10.1063/1.2841032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper considers nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator. These plasma oscillations are described by a nonlinear differential equation of the form x+epsilon(1+x(2))(x) over dot+x+Kx(2)+delta x(3)=F cos Omega t. The amplitudes of the forced harmonic, superharmonic, and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales method. Admissible values of the amplitude of the external strength are derived. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth-order Runge-Kutta scheme. (C) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Anharmonic dynamics of a mass O-spring oscillator
    Filipponi, A.
    Cavicchia, D. R.
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (07) : 730 - 735
  • [22] QUANTUM AND CLASSICAL LIOUVILLE DYNAMICS OF THE ANHARMONIC-OSCILLATOR
    MILBURN, GJ
    PHYSICAL REVIEW A, 1986, 33 (01): : 674 - 685
  • [23] NONLINEAR PLASMA OSCILLATIONS
    DRUMMOND, WE
    PINES, D
    ANNALS OF PHYSICS, 1964, 28 (03) : 478 - 499
  • [24] Dynamics of a Duffing oscillator with the stiffness modeled as a stochastic process
    Lobo, D. M.
    Ritto, T. G.
    Castello, D. A.
    Cataldo, E.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 273 - 280
  • [25] ANHARMONIC OSCILLATOR
    LU, P
    WALD, SS
    YOUNG, BL
    PHYSICAL REVIEW D, 1973, 7 (06): : 1701 - 1707
  • [26] ANHARMONIC OSCILLATOR
    HALPERN, FR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (01): : 44 - &
  • [27] Anharmonic oscillator
    Patnaik, P.K.
    Physica D: Nonlinear Phenomena, 1990, 46 (03)
  • [28] ANHARMONIC OSCILLATOR
    BENDER, CM
    WU, TT
    PHYSICAL REVIEW, 1969, 184 (05): : 1231 - &
  • [29] Global solvability of the anharmonic oscillator model from nonlinear optics
    Joly, JL
    Metivier, G
    Rauch, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) : 905 - 913
  • [30] ROBUST CONTROL OF A NONLINEAR ELECTRICAL OSCILLATOR MODELED BY DUFFING EQUATION
    Jimenez-Lizarraga, Manuel
    Basin, Michael
    Rodriguez-Ramirez, Pablo
    de Jesus Rubio, Jose
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (5A): : 2941 - 2952