Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator

被引:47
|
作者
Kadji, H. G. Enjieu [1 ,2 ]
Nbendjo, B. R. Nana [2 ]
Orou, J. B. Chabi [1 ]
Talla, P. K. [3 ]
机构
[1] Inst Math & Phys Sci, Porto Novo, Benin
[2] Univ Yaounde, Fac Sci, Lab Modelling & Simulat Engn Biol Phys, Yaounde, Cameroon
[3] Univ Dschang, Fac Sci, Dschang, Cameroon
关键词
D O I
10.1063/1.2841032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper considers nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator. These plasma oscillations are described by a nonlinear differential equation of the form x+epsilon(1+x(2))(x) over dot+x+Kx(2)+delta x(3)=F cos Omega t. The amplitudes of the forced harmonic, superharmonic, and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales method. Admissible values of the amplitude of the external strength are derived. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth-order Runge-Kutta scheme. (C) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ANHARMONIC-OSCILLATOR DESCRIPTION OF PLASMA-OSCILLATIONS
    MAHAFFEY, RA
    PHYSICS OF FLUIDS, 1976, 19 (09) : 1387 - 1391
  • [2] Effects of quartic nonlinearities and constant excitation force on nonlinear dynamics of plasma oscillations modeled by a Lienard-type oscillator with asymmetric double well potential
    Kpomahou, Y. J. F.
    Adechinan, J. A.
    Hinvi, L. A.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (11) : 3247 - 3266
  • [3] QUANTUM-THEORY OF INTERACTION OF A RESONANT FIELD WITH A NONLINEAR MEDIUM MODELED AS AN ANHARMONIC-OSCILLATOR
    AGARWAL, GS
    PURI, RR
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 13 - 14
  • [4] Effects of quartic nonlinearities and constant excitation force on nonlinear dynamics of plasma oscillations modeled by a Liénard-type oscillator with asymmetric double well potential
    Y. J. F. Kpomahou
    J. A. Adéchinan
    L. A. Hinvi
    Indian Journal of Physics, 2022, 96 : 3247 - 3266
  • [5] NONLINEAR SUSCEPTIBILITIES AND ANHARMONIC OSCILLATOR MODEL
    GARRETT, CGB
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1966, QE 2 (04) : R29 - &
  • [6] Nonlinear oscillations in new anharmonic potential
    Konwent, H
    Machnikowski, P
    Radosz, A
    ACTA PHYSICA POLONICA A, 1996, 89 (04) : 481 - 493
  • [7] Dynamics of an anharmonic oscillator with a periodic perturbation
    Yu. L. Bolotin
    V. Yu. Gonchar
    M. Ya. Granovskii
    A. V. Chechkin
    Journal of Experimental and Theoretical Physics, 1999, 88 : 196 - 205
  • [8] Dynamics of an anharmonic oscillator with a periodic perturbation
    Bolotin, YL
    Gonchar, VY
    Granovskii, MY
    Chechkin, AV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) : 196 - 205
  • [9] Influence of dissipation on extreme oscillations of a forced anharmonic oscillator
    Kaviya, B.
    Suresh, R.
    Chandrasekar, V. K.
    Balachandran, B.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 127
  • [10] Nonlinear dynamics of a RLC series circuit modeled by a generalized Van der Pol oscillator
    Kpomahou, Yelome Judicael Fernando
    Miwadinou, Clement Hodevewan
    Agbokpanzo, Richard Gilles
    Hinvi, Laurent Amoussou
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (3-4) : 479 - 494