Controlling Viscoelastic Flow in Microchannels with Slip

被引:17
|
作者
Bravo-Gutierrez, M. E. [1 ]
Castro, M. [2 ,3 ]
Hernandez-Machado, A. [4 ]
Corvera Poire, E. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Quim, Dept Fis & Quim Teor, Mexico City 04510, DF, Mexico
[2] Univ Pontificia Comillas, GISC, E-28015 Madrid, Spain
[3] Univ Pontificia Comillas, Grp Dinam Lineal DNL, Escuela Tec Sup Ingn ICAI, E-28015 Madrid, Spain
[4] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain
关键词
TOTAL ANALYSIS SYSTEMS; POLYMER-SOLUTIONS; COMPLEX FLUIDS; LIQUID FLOW; MICROFLUIDICS; EXTRUSION;
D O I
10.1021/la103520a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show that viscoelastic flow in a microchannel under a dynamic pressure gradient dramatically changes with the value of the apparent slip. We demonstrate this by using classical hydrodynamics and the Navier boundary condition for the apparent slip. At certain driving frequencies, the flow is orders of magnitude different for systems with and without slip, implying that controlling the degree of hydrophobicity of a microchannel can lead to the control of the magnitude of the flow. We verify this for viscoelastic fluids with very different constitutive equations. Moreover, we demonstrate that flow, given a value of the apparent slip, is a non-monotonic function of the driving frequency and can be increased or reduced by orders of magnitude by slightly changing the frequency of the driving pressure gradient. Finally, we show that, for dynamic situations, slip causes and effectively thicker channel whose effective thickness depends on frequency. We have calculated relevant quantities for blood and a polymeric fluid in order to motivate experimental studies.
引用
收藏
页码:2075 / 2079
页数:5
相关论文
共 50 条
  • [32] Compressibility effect on slip flow in non-circular microchannels
    Duan, Zhipeng
    Muzychka, Y. S.
    [J]. NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2007, 11 (3-4) : 259 - 272
  • [33] Slip-flow and Conjugate Heat Transfer in Rectangular Microchannels
    Hettiarachchi, H. D. Madhawa
    Golubovic, Mihajlo
    Worek, William M.
    Minkowycz, W. J.
    [J]. HT2008: PROCEEDING OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 3, 2009, : 547 - 555
  • [34] Models for gaseous slip flow in non-circular microchannels
    Duan, Zhipeng
    Muzychka, Y. S.
    [J]. PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 2, 2007, : 949 - 962
  • [35] Developing slip-flow and heat transfer in trapezoidal microchannels
    Niazmand, Hamid
    Renksizbulut, Metin
    Saeedi, Ehsan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (25-26) : 6126 - 6135
  • [36] LAMINAR FORCED CONVECTION IN ANNULAR MICROCHANNELS WITH SLIP FLOW REGIME
    Sadeghi, Arman
    Asgarshamsi, Abolhassan
    Saidi, Mohammad Hassan
    [J]. ICNMM 2009, PTS A-B, 2009, : 353 - 361
  • [37] CFD Modeling of Droplet Flows in Microchannels in Slip Flow Regime
    Garcia, Janneth M.
    Pineda, Saira F.
    Blanco, Armando J.
    [J]. PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 353 - +
  • [38] Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
    Duan, Zhipeng
    Muzychka, Y. S.
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 0112011 - 01120113
  • [39] Numerical Simulations of Viscoelastic Flow over a Confined Cylinder in Microchannels
    Lei, S.
    Nolan, K.
    [J]. 2014 IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2014, : 369 - 373
  • [40] Nanofluid and ferrofluid slip flow in rectangular and circular microchannels and minichannels
    Avsec, Jurij
    Virtic, Peter
    Naterer, Greg
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (03): : 5 - 8