Limit analysis of structures: A convex hull formulation

被引:4
|
作者
Manola, M. M. S. [1 ]
Koumousis, V. K. [1 ]
机构
[1] Natl Tech Univ Athens, Inst Struct Anal & Aseism Res, GR-15780 Athens, Greece
关键词
Convex hull; Linear programming; Limit analysis; Combined stresses; STRAIN-SOFTENING FRAMES; DEFORMATION ANALYSIS; DESIGN; BEHAVIOR; LOAD;
D O I
10.1016/j.compstruc.2015.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Limit analysis is treated herein in the framework of mathematical programming introducing a convex hull formulation for expressing the yield conditions in static and kinematic theorem. The proposed formulation differs in the number of variables and yield constraints compared to the standard one, which expresses yield condition as the intersection of halfspaces The two formulations are compared in terms of computational efficiency. Numerical results of plane steel frames prove the computational advantages of convex hull formulation for both 2D and 3D stress resultant interaction and demonstrate the effect of combined stresses on the load carrying capacity. (C) 2015 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:115 / 129
页数:15
相关论文
共 50 条
  • [21] Gaussian convex hull
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (08): : 762 - 763
  • [22] On Sumsets and Convex Hull
    Boeroeczky, Karoly J.
    Santos, Francisco
    Serra, Oriol
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 705 - 729
  • [23] Machine learning algorithm based on convex hull analysis
    Nemirko, A. P.
    Dula, J. H.
    14TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS, 2021, 186 : 381 - 386
  • [24] On the optimal separating hyperplane for arbitrary sets: a generalization of the SVM formulation and a convex hull approach
    Ribeiro, Ademir A.
    Sachine, Mael
    OPTIMIZATION, 2022, 71 (01) : 213 - 226
  • [25] On Sumsets and Convex Hull
    Károly J. Böröczky
    Francisco Santos
    Oriol Serra
    Discrete & Computational Geometry, 2014, 52 : 705 - 729
  • [26] On the application of the convex hull to histogram analysis in threshold selection
    Toussaint, Godfried T.
    PATTERN RECOGNITION LETTERS, 1983, 2 (02) : 75 - 77
  • [27] Extended convex hull
    Fukuda, K
    Liebling, TM
    Lütolf, C
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2): : 13 - 23
  • [28] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, Jorge Kazuo
    Computers and Geosciences, 1997, 23 (07): : 725 - 738
  • [29] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, JK
    COMPUTERS & GEOSCIENCES, 1997, 23 (07) : 725 - 738
  • [30] A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures
    Heng Peng
    Yinghua Liu
    Haofeng Chen
    Computational Mechanics, 2019, 63 : 1 - 22