Discriminative Feature Extraction with Deep Neural Networks

被引:0
|
作者
Stuhlsatz, Andre [1 ]
Lippel, Jens [1 ]
Zielke, Thomas [1 ]
机构
[1] Univ Appl Sci Dusseldorf, Dept Mech & Proc Engn, Dusseldorf, Germany
关键词
LEARNING ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework for optimizing Deep Neural Networks (DNN) with the objective of learning low-dimensional discriminative features from high-dimensional complex patterns. In a two-stage process that effectively implements a Nonlinear Discriminant Analysis (NDA), we first pretrain a DNN using stochastic optimization, partly supervised and unsupervised. This stage involves layer-wise training and stacking of single Restricted Boltzmann Machines (RBM). The second stage performs fine-tuning of the DNN using a modified back-propagation algorithm that directly optimizes a Fisher criterion in the feature space spanned by the units of the last hidden-layer of the network. Our experimental results show that the features learned by a DNN using the proposed framework greatly facilitate classification, even when the discriminative features constitute a substantial dimension reduction.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Sequence-discriminative training of deep neural networks
    Vesely, Karel
    Ghoshal, Arnab
    Burgett, Lukas
    Povey, Daniel
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2344 - 2348
  • [22] Deep discriminative feature learning based on classification-enhanced neural networks for visual process monitoring
    Wang, Wenjing
    Yu, Zhenhua
    Ding, Weichao
    Jiang, Qingchao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 156
  • [23] Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks
    Dosovitskiy, Alexey
    Fischer, Philipp
    Springenberg, Jost Tobias
    Riedmiller, Martin
    Brox, Thomas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (09) : 1734 - 1747
  • [24] Joint Supervision for Discriminative Feature Learning in Convolutional Neural Networks
    Guo, Jianyuan
    Yuan, Yuhui
    Zhang, Chao
    COMPUTER VISION, PT II, 2017, 772 : 509 - 520
  • [25] Extended Siamese Convolutional Neural Networks for Discriminative Feature Learning
    Lee, Sangyun
    Hong, Sungjun
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2022, 22 (04) : 339 - 349
  • [26] Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks
    Liu, Jing
    Yang, Zhe
    Liu, Yi
    Mu, Caihong
    REMOTE SENSING, 2021, 13 (13)
  • [27] DOA Estimation by Feature Extraction Based on Parallel Deep Neural Networks and MRMR Feature Selection Algorithm
    Al-Tameemi, Ashwaq Neaman Hassan
    Feghhi, Mahmood Mohassel
    Tazehkand, Behzad Mozaffari
    IEEE ACCESS, 2025, 13 : 40480 - 40502
  • [28] Improving Language-Universal Feature Extraction with Deep Maxout and Convolutional Neural Networks
    Miao, Yajie
    Metze, Florian
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 800 - 804
  • [29] Feature Selection and Extraction for Graph Neural Networks
    Acharya, Deepak Bhaskar
    Zhang, Huaming
    ACMSE 2020: PROCEEDINGS OF THE 2020 ACM SOUTHEAST CONFERENCE, 2020, : 252 - 255
  • [30] The feature extraction in character recognition with a neural networks
    Li, P
    Mu, XF
    INSTRUMENTS FOR OPTICS AND OPTOELECTRONIC INSPECTION AND CONTROL, 2000, 4223 : 251 - 253