Complex motion of Brownian particles with energy depots

被引:232
|
作者
Schweitzer, F
Ebeling, W
Tilch, B
机构
[1] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany
[2] Univ Stuttgart, Inst Theoret Phys, D-70550 Stuttgart, Germany
关键词
D O I
10.1103/PhysRevLett.80.5044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the motion of Brownian particles which have the ability to take up energy from the environment, to store it in an internal depot, and to convert internal energy into kinetic energy. The resulting Langevin equation includes an additional acceleration term. The motion of the Brownian particles in a parabolic potential is discussed for two different cases: (i) continuous take-up of energy and (ii) take-up of energy at localized sources. If the take-up of energy is above a critical value, we found a limit-cycle motion of the particles, which, in case (ii), can be interrupted by stochastic influences. Including reflecting obstacles, we found for the deterministic case a chaotic motion of the particle.
引用
收藏
页码:5044 / 5047
页数:4
相关论文
共 50 条
  • [21] The paradigm of complex probability and the Brownian motion
    Abou Jaoude, Abdo
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 478 - 503
  • [22] Brownian Motion in the Fluids with Complex Rheology
    Rusakov, V. V.
    Raikher, Yu. L.
    Perzynski, R.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2015, 10 (04) : 1 - 43
  • [23] Condensation of SIP Particles and Sticky Brownian Motion
    Mario Ayala
    Gioia Carinci
    Frank Redig
    Journal of Statistical Physics, 2021, 183
  • [24] Active brownian motion of pairs and swarms of particles
    Ebeling, W.
    ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1657 - 1671
  • [25] Stochastic Spacetime and Brownian Motion of Test Particles
    L. H. Ford
    International Journal of Theoretical Physics, 2005, 44 : 1753 - 1768
  • [26] MEMORY EFFECTS IN THE MOTION OF NONSPHERICAL BROWNIAN PARTICLES
    KOSTER, B
    KAGERMANN, H
    PHYSICA A, 1985, 131 (01): : 157 - 181
  • [27] ON THEORY OF COAGULATION OF NONINTERACTING PARTICLES IN BROWNIAN MOTION
    HIDY, GM
    JOURNAL OF COLLOID SCIENCE, 1965, 20 (02): : 123 - &
  • [28] Fractal Brownian Motion of Colloidal Particles in Plasma
    K. G. Koss
    I. I. Lisina
    M. M. Vasiliev
    A. A. Alekseevskaya
    E. A. Kononov
    O. F. Petrov
    Plasma Physics Reports, 2023, 49 : 57 - 64
  • [29] MOLECULAR THEORY OF BROWNIAN MOTION FOR SEVERAL PARTICLES
    DEUTCH, JM
    OPPENHEIM, I
    JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (08): : 3547 - +
  • [30] Investigation of apparent correlated motion of Brownian particles
    Durand, RV
    Franck, C
    PHYSICAL REVIEW E, 1997, 56 (02): : 1998 - 2011