Nanowire stacked bimetallic metal-organic frameworks for asymmetric supercapacitor

被引:35
|
作者
Wang, Jianli [1 ]
Liang, Jing [1 ,2 ]
Lin, Yuchen [1 ]
Shao, Kejin [1 ]
Chang, Xue [1 ]
Qian, Lijuan [1 ]
Li, Zhan [1 ,2 ,3 ]
Hu, Peizhuo [1 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Inst Natl Nucl Ind, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Frontiers Sci Ctr Rare Isotopes, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanowire; Bimetallic metal-organic framework; Asymmetric supercapacitor; HIGH-PERFORMANCE; ELECTRODE MATERIALS; NANOSHEET ARRAYS; NI; GRAPHENE; NANOCAGES; CO;
D O I
10.1016/j.cej.2022.137368
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-organic frameworks (MOFs) have broad application prospects in the field of supercapacitors due to their unique construction and tunable pore size. However, maintaining high energy density under high power density is still a difficult problem to limit the application of supercapacitors. Herein, a simple, mild, and one-step solvothermal process was used to fabricate Ni-MOF crystals, which was a template for preparing flower-like NiCoMOF-2 by in-situ etching methods. Interestingly, the "petals" of NiCo-MOF-2 are formed by stacking multiple nanowires, which can enhance richer active sites to promote charge transfer owing to the larger contact area between the electrolyte and the electrode material. Consequently, the NiCo-MOF-2 exhibits a larger specific capacity of 108.5 mAh g-1 at a current density of 0.5 A g-1 and the assembled asymmetric supercapacitor (NiCoMOF-2//AC) delivers a stack energy density of 45.7 Wh kg-1 at a power density of 450.6 W kg-1 with excellent life span of 84.3% capacity retention after 6500 cycles.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal-Organic Frameworks for Supercapacitor Applications
    Young, Christine
    Kim, Jeonghun
    Kaneti, Yusuf Valentino
    Yamauchi, Yusuke
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (05): : 2007 - 2015
  • [22] Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis
    Yoon, Minyoung
    Srirambalaji, Renganathan
    Kim, Kimoon
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 1196 - 1231
  • [23] Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis
    Dang, Dongbin
    Wu, Pengyan
    He, Cheng
    Xie, Zhong
    Duan, Chunying
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (41) : 14321 - 14323
  • [24] Metal-Organic Frameworks for Asymmetric Catalysis and Chiral Separations
    Wenbin Lin
    [J]. MRS Bulletin, 2007, 32 : 544 - 548
  • [25] Asymmetric Catalysis with Chiral Porous Metal-Organic Frameworks
    Lin, Wenbin
    [J]. TOPICS IN CATALYSIS, 2010, 53 (13-14) : 869 - 875
  • [26] Metal-organic frameworks for asymmetric catalysis and chiral separations
    Lin, Wenbin
    [J]. MRS BULLETIN, 2007, 32 (07) : 544 - 548
  • [27] Metal-Organic Frameworks in Asymmetric Catalysis: Recent Advances
    Artem'ev, A. V.
    Fedin, V. P.
    [J]. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, 2019, 55 (06) : 800 - 817
  • [28] Metal nodes in bimetallic metal-organic frameworks as isolated sites for hydrogenation reactions
    Shakya, Deependra
    Ejegbavwo, Otega
    Brandt, Amy
    Thayalan, Rajeshkumar
    Farzandh, Sharfa
    Senanayake, Sanjaya
    Monnier, John
    Vogiatzis, Konstantinos
    Shustova, Natalia
    Chen, Donna
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [29] Advances in Chiral Metal-Organic and Covalent Organic Frameworks for Asymmetric Catalysis
    Zhang, Hao
    Lou, Lan-Lan
    Yu, Kai
    Liu, Shuangxi
    [J]. SMALL, 2021, 17 (22)
  • [30] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341