A refinement of Vietoris' inequality for cosine polynomials

被引:1
|
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Dept Math, Hunghom, Hong Kong, Peoples R China
关键词
Vietoris' theorem; inequalities; cosine polynomials; Sturm's theorem; Jacobi polynomials;
D O I
10.1142/S021953051550013X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-n(x) = Sigma(n)(k=0) b(k) cos(kx) with b(2k) = b(2k+ =1) = 1/4(k) ((2k)(k)) (k >= 0). In 1958, Vietoris proved that T-n(x) > 0 (n >= 1; x is an element of (0, pi)). We offer the following improvement of this result: The inequalities T-n(x) >= c(0) + c(1)x + c(2)x(2) > 0 (c(k) is an element of R, k = 0, 1, 2) hold for all n >= 1 and x is an element of (0, pi) if and only if c(0) = pi(2)c(2), c(1) = -2 pi c(2), 0 < c(2) <= alpha, where alpha = min(0 <= t<pi) T-6(t)/(t - pi)(2) = 0.12290....
引用
收藏
页码:615 / 629
页数:15
相关论文
共 50 条
  • [1] A refinement of Vietoris' inequality for sine polynomials
    Alzer, Horst
    Koumandos, Stamatis
    Lamprecht, Martin
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (11) : 1549 - 1557
  • [2] An inequality for cosine polynomials
    Alzer, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) : 567 - 570
  • [3] Inequality for cosine polynomials
    J Math Anal Appl, 2 (567-570):
  • [4] An integral inequality for cosine polynomials
    Alzer, Horst
    Guessab, Allal
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 532 - 534
  • [5] On Appell-Vietoris Polynomials
    Cacao, Isabel
    Irene Falcao, M.
    Malonek, Helmuth R.
    Miranda, Fernando
    Tomaz, Graca
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT I, 2024, 14815 : 302 - 316
  • [6] An improved Vietoris sine inequality
    Kwong, Man Kam
    JOURNAL OF APPROXIMATION THEORY, 2015, 189 : 29 - 42
  • [7] ON AN APPLICATION OF VIETORIS'S INEQUALITY
    Sokoland, Janusz
    Witowicz, Pawel
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 829 - 836
  • [8] ON THE ZEROS OF CERTAIN COSINE POLYNOMIALS
    MINGARELLI, AB
    WANG, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) : 1103 - 1106
  • [9] LACUNARY INTERPOLATION BY COSINE POLYNOMIALS
    SELVARAJ, CR
    ACTA MATHEMATICA HUNGARICA, 1994, 64 (04) : 361 - 372
  • [10] Cosine polynomials with few zeros
    Juskevicius, Tomas
    Sahasrabudhe, Julian
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 877 - 892