Work-Hardening Mechanism in High-Nitrogen Austenitic Stainless Steel

被引:30
|
作者
Masumura, Takuro [1 ,2 ]
Seto, Yuki [2 ,3 ,5 ]
Tsuchiyama, Toshihiro [1 ,3 ,5 ]
Kimura, Ken [4 ]
机构
[1] Kyushu Univ, Res Ctr Steel, Fukuoka 8190395, Japan
[2] Kyushu Univ, Grad Sch Engn, Fukuoka 8190395, Japan
[3] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[4] Nippon Steel Corp Ltd, Steel Res Labs, Titanium & Stainless Steel Res Lab, Chiba 2938511, Japan
[5] Kyushu Univ, Fukuoka, Japan
关键词
austenitic stainless steel; dislocation density; planar dislocation array; nitrogen; mWH/WA method; SHORT-RANGE ORDER; CARBON; MICROSTRUCTURE; DEFORMATION; DIFFERENCE; BEHAVIOR; STRAINS; ENERGY;
D O I
10.2320/matertrans.H-M2020804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The remarkably high work-hardening rate in high-nitrogen austenitic stainless steels is generally believed to be due to the promotion of dislocation accumulation by nitrogen addition. However, analysis of dislocation accumulation behavior by the modified Williamson-Hall/Warren-Averbach method reveals that no difference to the increment of the dislocation density during deformation exists between austenitic steels with and without nitrogen. Since cross slipping is markedly suppressed in high-nitrogen steels, the moving dislocations are back-stressed by the planar dislocation arrays. This induces the deformation resistance and the high work-hardening rate.
引用
收藏
页码:678 / 684
页数:7
相关论文
共 50 条
  • [31] Work Hardening and Tensile Behaviour of an Austenitic Stainless Steel at High Temperature
    Angella, Giuliano
    [J]. THERMEC 2009, PTS 1-4, 2010, 638-642 : 2973 - 2978
  • [32] MECHANISM OF WORK-HARDENING IN HADFIELD MANGANESE STEEL
    DASTUR, YN
    LESLIE, WC
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05): : 749 - 759
  • [33] SUBSTRUCTURAL MECHANISM OF WORK-HARDENING IN IRON AND STEEL
    POTEMKIN, K
    [J]. STEEL IN THE USSR, 1979, 9 (09): : 472 - 475
  • [34] Surface Hardening of High-Nitrogen Austenitic Steel by Severe Deformation-Heat Treatment
    Narkevich, N. A.
    Volochaev, M. N.
    Shulepov, I. A.
    Gomorova, Yu. F.
    [J]. PHYSICS OF METALS AND METALLOGRAPHY, 2022, 123 (10): : 1024 - 1030
  • [35] Discontinuous precipitation in a high-nitrogen austenitic steel
    Rovatti, L.
    Montanari, R.
    Ucciardello, N.
    Mezzi, A.
    Kaciulis, S.
    Carosi, A.
    [J]. THERMEC 2009, PTS 1-4, 2010, 638-642 : 3597 - +
  • [36] Impact properties of high-nitrogen austenitic stainless steels
    Yuan, Zhizhong
    Dai, Qixun
    Cheng, Xiaonong
    Chen, Kangmin
    Xu, Wenwei
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 475 (1-2): : 202 - 206
  • [37] Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI 304 Austenitic Stainless Steel
    Naghizadeh, Meysam
    Mirzadeh, Homed
    [J]. STEEL RESEARCH INTERNATIONAL, 2019, 90 (10)
  • [38] Work hardening in a fine grained austenitic stainless steel
    Sinclair, C. W.
    Proudhon, H.
    Mithieux, J. -D.
    [J]. THERMEC 2006, PTS 1-5, 2007, 539-543 : 4714 - +
  • [39] Precipitation and recrystallization behaviors of a high-nitrogen austenitic stainless steel aging at 900°C
    Shi, Feng
    Qi, Yang
    Xu, Mingzhou
    Liu, Chunming
    [J]. ADVANCES IN SUPERALLOYS, PTS 1 AND 2, 2011, 146-147 : 189 - +
  • [40] Constitutive analysis of stress-strain curves of a high-nitrogen austenitic stainless steel
    Diao Zhan-ying
    Luo Hai-wen
    Wang Rui-zhen
    Xiang Jin-zhong
    [J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2007, 14 : 335 - 338