Work-Hardening Mechanism in High-Nitrogen Austenitic Stainless Steel

被引:30
|
作者
Masumura, Takuro [1 ,2 ]
Seto, Yuki [2 ,3 ,5 ]
Tsuchiyama, Toshihiro [1 ,3 ,5 ]
Kimura, Ken [4 ]
机构
[1] Kyushu Univ, Res Ctr Steel, Fukuoka 8190395, Japan
[2] Kyushu Univ, Grad Sch Engn, Fukuoka 8190395, Japan
[3] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[4] Nippon Steel Corp Ltd, Steel Res Labs, Titanium & Stainless Steel Res Lab, Chiba 2938511, Japan
[5] Kyushu Univ, Fukuoka, Japan
关键词
austenitic stainless steel; dislocation density; planar dislocation array; nitrogen; mWH/WA method; SHORT-RANGE ORDER; CARBON; MICROSTRUCTURE; DEFORMATION; DIFFERENCE; BEHAVIOR; STRAINS; ENERGY;
D O I
10.2320/matertrans.H-M2020804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The remarkably high work-hardening rate in high-nitrogen austenitic stainless steels is generally believed to be due to the promotion of dislocation accumulation by nitrogen addition. However, analysis of dislocation accumulation behavior by the modified Williamson-Hall/Warren-Averbach method reveals that no difference to the increment of the dislocation density during deformation exists between austenitic steels with and without nitrogen. Since cross slipping is markedly suppressed in high-nitrogen steels, the moving dislocations are back-stressed by the planar dislocation arrays. This induces the deformation resistance and the high work-hardening rate.
引用
收藏
页码:678 / 684
页数:7
相关论文
共 50 条
  • [1] Effect of Carbon and Nitrogen on Work-hardening Behavior in Metastable Austenitic Stainless Steel
    Masumura, Takuro
    Tsuchiyama, Toshihiro
    [J]. ISIJ INTERNATIONAL, 2021, 61 (02) : 617 - 624
  • [2] Age-Hardening Behavior in High-Nitrogen Stable Austenitic Stainless Steel
    Masumura, Takuro
    Honda, Tatsuya
    Naridomi, Kosuke
    Uranaka, Shohei
    Tsuchiyama, Toshihiro
    Miyamoto, Goro
    Yamasaki, Shota
    [J]. MATERIALS TRANSACTIONS, 2022, 63 (02) : 163 - 169
  • [3] Cryogenic work-hardening behavior for a metastable austenitic stainless steel at liquid nitrogen temperature
    Cheng, Wangjun
    Cui, Dongdong
    Sun, Yaoning
    Liu, Wei
    Xu, Yifei
    Liu, Bin
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [4] The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel
    Maier, G. G.
    Astafurova, E. G.
    Melnikov, E. V.
    Moskvina, V. A.
    Vojtsik, V. F.
    Galchenko, N. K.
    Zakharov, G. N.
    [J]. INTERNATIONAL SEMINAR ON INTERDISCIPLINARY PROBLEMS IN ADDITIVE TECHNOLOGIES, 2016, 140
  • [5] Work-hardening behavior and evolution of dislocation-microstructures in high-nitrogen bearing austenitic steels
    Kubota, S
    Xia, Y
    Tomota, Y
    [J]. ISIJ INTERNATIONAL, 1998, 38 (05) : 474 - 481
  • [6] Deformation twinning in high-nitrogen austenitic stainless steel
    Lee, T.-H.
    Oh, C.-S.
    Kim, S.-J.
    Takaki, S.
    [J]. ACTA MATERIALIA, 2007, 55 (11) : 3649 - 3662
  • [7] Influence of nitrogen on the mechanism of austenitic stainless steel hardening
    Gerashchenko I.P.
    Nikitina N.V.
    Karmanchuk I.V.
    [J]. Russian Physics Journal, 1999, 42 (7) : 631 - 635
  • [8] Work-hardening in the drilling of austenitic stainless steels
    Dolinsek, S
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 133 (1-2) : 63 - 70
  • [9] THE INFLUENCE OF GRAIN-SIZE ON THE WORK-HARDENING OF AN AUSTENITIC STAINLESS-STEEL
    DOLLAR, M
    GORCZYCA, S
    [J]. MATERIALS SCIENCE AND ENGINEERING, 1984, 64 (02): : L27 - L31
  • [10] Fatigue and corrosion fatigue of high-nitrogen austenitic stainless steel
    Diener, M
    Speidel, MO
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2004, 19 (01) : 111 - 115