On the finite temperature formalism in integrable quantum field theories

被引:24
|
作者
Mussardo, G
机构
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
来源
关键词
D O I
10.1088/0305-4470/34/36/319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two different theoretical formulations of the finite temperature effects have been recently proposed for integrable field theories. In order to decide which of them is the correct one, we perform for a particular model an explicit check of their predictions for the one-point function of the trace of the stress-energy tensor, a quantity which can be independently determined by the thermodynamical Bethe ansatz.
引用
收藏
页码:7399 / 7410
页数:12
相关论文
共 50 条
  • [1] Finite-temperature dynamical correlations in massive integrable quantum field theories
    Essler, Fabian H. L.
    Konik, Robert M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [2] Varying the Unruh temperature in integrable quantum field theories
    Niedermaier, M
    [J]. NUCLEAR PHYSICS B, 1998, 535 (03) : 621 - 649
  • [3] Finite dimensional Hamiltonian formalism for gauge and quantum field theories
    Hélein, F
    Kouneiher, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2306 - 2347
  • [4] Quantum quenches in integrable field theories
    Fioretto, Davide
    Mussardo, Giuseppe
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] On space of integrable quantum field theories
    Smirnova, F. A.
    Zamolodchikov, A. B.
    [J]. NUCLEAR PHYSICS B, 2017, 915 : 363 - 383
  • [6] Deformations of Quantum Field Theories and Integrable Models
    Gandalf Lechner
    [J]. Communications in Mathematical Physics, 2012, 312 : 265 - 302
  • [7] Deformations of Quantum Field Theories and Integrable Models
    Lechner, Gandalf
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (01) : 265 - 302
  • [8] Integrable quantum field theories with unstable particles
    Miramontes, JL
    Fernández-Pousa, CR
    [J]. PHYSICS LETTERS B, 2000, 472 (3-4) : 392 - 401
  • [9] An operator expansion for integrable quantum field theories
    Bostelmann, H.
    Cadamuro, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (09)
  • [10] Aspects of integrable quantum field theories with boundaries
    Corrigan, E
    [J]. INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 95 - 107