GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition

被引:129
|
作者
Yue, Yuanzheng [1 ]
Hao, Yue [1 ]
Zhang, Jincheng [1 ]
Ni, Jinyu [1 ]
Mao, Wei [1 ]
Feng, Qian [1 ]
Liu, Linjie [1 ]
机构
[1] Xidian Univ, Sch Microelect, Key Lab Minist Educ Wide Band Gap Semicond Mat &, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Al2O3 and HVO2; atomic layer deposition (ALD); interfacial passivation layer (IPL); metal-oxide-semiconductor high-electron mobility transistor (MOS-HENIT); stack gate;
D O I
10.1109/LED.2008.2000949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a novel AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using a stack gate HfO2/Al2O3 structure grown by atomic layer deposition. The stack gate consists of a thin HfO2 (30-angstrom) gate dielectric and a thin Al2O3 (20-angstrom) interfacial passivation layer (IPL). For the 50-angstrom stack gate, no measurable C-V hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a Al2O3 IPL on an AlGaN substrate. Good surface passivation effects of the Al2O3 IPL have also been confirmed by pulsed gate measurements. Devices with 1-mu m gate lengths exhibit a cutoff frequency (f(T)) of 12 GHz and a maximum frequency of oscillation (f(MAX)) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.
引用
收藏
页码:838 / 840
页数:3
相关论文
共 50 条
  • [11] A study on Al2O3 passivation in GaN MOS-HEMT by pulsed stress
    Yue Yuan-Zheng
    Hao Yue
    Zhang Jin-Cheng
    Feng Qian
    Ni Jin-Yu
    Ma Xiao-Hua
    CHINESE PHYSICS B, 2008, 17 (04) : 1405 - 1409
  • [12] Interfacial thermal stability and band alignment of Al2O3/HfO2/Al2O3/Si gate stacks grown by atomic layer deposition
    Wei, H. H.
    He, G.
    Chen, X. S.
    Cui, J. B.
    Zhang, M.
    Chen, H. S.
    Sun, Z. Q.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 591 : 240 - 246
  • [13] Effect of an inserted Al2O3 passivation layer for atomic layer deposited HfO2 on indium phosphide
    Xu, Qian
    Ding, Yao-Xin
    Zheng, Zhi-Wei
    Ying, Lei-Ying
    Zhang, Bao-Ping
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (12)
  • [14] Modeling the breakdown statistics of Al2O3/HfO2 nanolaminates grown by atomic-layer-deposition
    Conde, A.
    Martinez, C.
    Jimenez, D.
    Miranda, E.
    Rafi, J. M.
    Campabadal, F.
    Sune, J.
    SOLID-STATE ELECTRONICS, 2012, 71 : 48 - 52
  • [15] Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications
    Koo, J
    Jeon, H
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (04) : 945 - 950
  • [16] Characterization of HfO2/Al2O3 Gate Dielectric Nanometer-Stacks Grown by Atomic Layer Deposition on InAlAs Substrates
    Wu, Li-Fan
    Zhang, Yu-Ming
    Lu, Hong-Liang
    Zhang, Yi-Men
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 978 - 980
  • [17] Characterization of HfO2/Al2O3 Gate Dielectric Nanometer-Stacks Grown by Atomic Layer Deposition on Ge Substrates
    Li, Xue-Fei
    Li, Ai-Dong
    Qian, Xu
    Fu, Ying-Ying
    Wu, Di
    2ND INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS, 2012, 1476 : 21 - 25
  • [18] Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric
    Liu Lin-Jie
    Yue Yuan-Zheng
    Zhang Jin-Cheng
    Ma Xiao-Hua
    Dong Zuo-Dian
    Hao Yue
    ACTA PHYSICA SINICA, 2009, 58 (01) : 536 - 540
  • [19] Atomic layer deposition of Al2O3 and HfO2 for high power laser application
    Liu, Hao
    Ma, Ping
    Pu, Yunti
    Zhao, Zuzhen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859
  • [20] Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition
    Rahman, Md. Mamunur
    Kim, Jun-Gyu
    Kim, Dae-Hyun
    Kim, Tae-Woo
    MICROMACHINES, 2019, 10 (06)