Investigation of ethanol gas sensing properties of Dy-doped SnO2 nanostructures

被引:16
|
作者
Singh, Gurpreet [1 ]
Kaur, Maninder [1 ]
Arora, Bindiya [1 ]
Singh, Ravi Chand [1 ]
机构
[1] Guru Nanak Dev Univ, Dept Phys, Amritsar 143005, Punjab, India
关键词
LOW OPERATING TEMPERATURE; OXIDE NANOPARTICLES; RAMAN-SPECTROSCOPY; SENSOR; SIZE; NANOCOMPOSITES; PERFORMANCE; NANORODS; SEMICONDUCTORS; NANOFIBERS;
D O I
10.1007/s10854-017-7982-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we report doping induced enhanced sensor response of SnO2 based sensor towards ethanol at a working temperature of 200 degrees C. Undoped and dysprosium-doped (Dy-doped) SnO2 nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and Raman results verified tetragonal rutile structure of the prepared samples. It has been observed that crystallite size reduced with increase in dopant concentration. In addition, the particle size has been calculated from Raman spectroscopy using phonon confinement model and the values match very well with results obtained from TEM and X-ray diffraction investigations. Dy-doped SnO2 sensors exhibited significantly enhanced response towards ethanol as compared to undoped sensor. The optimum operating temperature of doped sensor reduced to 200 degrees C as compared to 320 degrees C for that of undoped sensor. Moreover, sensor fabricated from Dy-doped SnO2 nanostructures was highly selective toward ethanol which signifies its potential use for commercial applications. The gas sensing mechanism of SnO2 and possible origin of enhanced sensor response has been discussed.
引用
收藏
页码:867 / 875
页数:9
相关论文
共 50 条
  • [11] Novel SnO2 hierarchical nanostructures: Synthesis and their gas sensing properties
    Zhou, Xiaoming
    Fu, Wuyou
    Yang, Haibin
    Zhang, Yanyan
    Li, Minghui
    Li, Yixing
    MATERIALS LETTERS, 2013, 90 : 53 - 55
  • [12] Synthesis and Gas Sensing Properties of SnO2 Nanostructures by Thermal Evaporation
    Mustapha, Wan Normiza Wan
    Rezan, Sheikh Abdul
    Hutagalung, Sabar Derita
    Nguyen Van Hieu
    Mohamed, Khairudin
    You, Chan Kok
    ADVANCED X-RAY CHARACTERIZATION TECHNIQUES, 2013, 620 : 350 - +
  • [13] Hydrothermal synthesis of SnO2 hierarchical nanostructures and their gas sensing properties
    Kuang, X.
    Liu, T.
    Li, T.
    Zeng, W.
    Peng, X.
    Zhang, H.
    MATERIALS TECHNOLOGY, 2016, 31 (05) : 260 - 265
  • [14] A study of oxygen gas sensing in Zn-doped SnO2 nanostructures
    Gupta, Parul
    Sharma, S. K.
    MATERIALS RESEARCH EXPRESS, 2017, 4 (06):
  • [15] Hydrothermal synthesis of hierarchical flower-like SnO2 nanostructures with enhanced ethanol gas sensing properties
    Zeng, Wen
    Zhang, He
    Li, Yanqiong
    Chen, Weigen
    Wang, Zhongchang
    MATERIALS RESEARCH BULLETIN, 2014, 57 : 91 - 96
  • [16] Preparation and characterization of Eu-doped SnO2 nanostructures for hydrogen gas sensing
    Gurpreet Singh
    Nipin Kohli
    Ravi Chand Singh
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 2257 - 2266
  • [17] Preparation and characterization of Eu-doped SnO2 nanostructures for hydrogen gas sensing
    Singh, Gurpreet
    Kohli, Nipin
    Singh, Ravi Chand
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (02) : 2257 - 2266
  • [18] Influence of hierarchical nanostructures on the gas sensing properties of SnO2 biomorphic films
    Dong, Qun
    Su, Huilan
    Xu, Jiaqiang
    Zhang, Di
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (01) : 420 - 428
  • [19] Gas-sensing properties of antimony-doped SnO2
    Kuznetsova, S. A.
    Ikonnikova, L. F.
    Kozik, V. V.
    INORGANIC MATERIALS, 2007, 43 (06) : 622 - 626
  • [20] Studies on the Preparation and Gas Sensing Properties of SnO2 Nanostructures at Room Temperature
    Noipa, Kiattisak
    Pukird, Supakorn
    FUNCTIONALIZED AND SENSING MATERIALS, 2010, 93-94 : 227 - 230