Global attractor and its dimension for a Klein-Gordon-Schrodinger system

被引:0
|
作者
Poulou, M. N.
Stavrakakis, N. M.
机构
关键词
D O I
10.1007/978-3-540-75712-2_107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1013 / 1020
页数:8
相关论文
共 50 条
  • [21] Global attractors for the discrete Klein-Gordon-Schrodinger type equations
    Li, Chunqiu
    Hsu, Cheng Hsiung
    Lin, Jian Jhong
    Zhao, Caidi
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (10) : 1404 - 1426
  • [22] Spatially singular solutions for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Cao, Jianxiong
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [23] Stability of standing waves for the Klein-Gordon-Schrodinger system
    Kikuchi, Hiroaki
    Ohta, Masahito
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 109 - 114
  • [24] Global attractors for the Klein-Gordon-Schrodinger equation in unbounded domains
    Lu, KN
    Wang, BX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 281 - 316
  • [25] ON THE GLOBAL STRONG SOLUTIONS OF COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS
    HAYASHI, N
    VONWAHL, W
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) : 489 - 497
  • [26] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [27] GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH HIGHER ORDER COUPLING
    Soenjaya, Agus Leonardi
    MATHEMATICA BOHEMICA, 2021, : 461 - 470
  • [28] Random attractors for the stochastic damped Klein-Gordon-Schrodinger system
    Zhao, Xin
    Li, Yin
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [29] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [30] ORBITAL STABILITY OF PERIODIC WAVES FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Natali, Fabio
    Pastor, Ademir
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (01) : 221 - 238