Bifurcation of the periodic orbits of Hamiltonian systems: An analysis using normal form theory

被引:24
|
作者
Sadovskii, DA
Delos, JB
机构
[1] COLL WILLIAM & MARY,DEPT PHYS,WILLIAMSBURG,VA 23187
[2] UNIV COLORADO,JOINT INST LAB ASTROPHYS,BOULDER,CO 80309
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 02期
关键词
D O I
10.1103/PhysRevE.54.2033
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop an analytic technique to study the dynamics in the neighbourhood of a periodic trajectory of a Hamiltonian system. The theory begins with Poincare and Birkhoff; major modern contributions are due to Meyer, Arnol'd, and Deprit. The realization of the method relies on local Fourier-Taylor series expansions with numerically obtained coefficients. The procedure and machinery are presented in detail on the example of the ''perpendicular'' (z = 0) periodic trajectory of the diamagnetic Kepler problem. This simple one-parameter problem well exhibits the power of our technique. Thus, we obtain a precise analytic description of bifurcations observed by J.-M. Mao and J.B. Delos [Phys. Rev. A 45, 1746 (1992)] and explain the underlying dynamics adn symmetries.
引用
收藏
页码:2033 / 2070
页数:38
相关论文
共 50 条