Triboelectric nanogenerator for Mars environment

被引:49
|
作者
Seol, Myeong-Lok [1 ]
Han, Jin-Woo [1 ]
Moon, Dong-Il [1 ]
Meyyappan, M. [1 ]
机构
[1] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Triboelectric nanogenerator; Mars; Atmosphere; Temperature; Ultraviolet; Space; CONTACT ELECTRIFICATION; PRESSURE; SURFACE; RADIATION; GENERATOR; PARTICLE; IMPACTS; MISSION; METALS; ENERGY;
D O I
10.1016/j.nanoen.2017.07.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Consistent and reliable power supply is critical for interplanetary exploration missions and habitats on Mars. Abundant wind, strong dust storms and surface vibrations on Mars are attractive mechanical sources to convert into electrical energy. Conventional electromagnetic generators are unsuitable for planetary exploration due to the heavy weight of permanent magnets and metal coils and high launch costs. Triboelectric nanogenerator (TENG) yielding high output power per mass is a potential alternative. The impact of Mars environment on triboelectricity generation is an unknown but critical issue, which is investigated here using a Mars analogue weather chamber. Individual and combined effects of environmental factors such as atmospheric pressure, atmospheric composition, temperature, ultraviolet and gamma radiations on the performance of TENG are analyzed. The potential of TENG for Mars exploration is addressed based on the experimental results and scientific implication.
引用
收藏
页码:238 / 244
页数:7
相关论文
共 50 条
  • [21] Integrated charge excitation triboelectric nanogenerator
    Liu, Wenlin
    Wang, Zhao
    Wang, Gao
    Liu, Guanlin
    Chen, Jie
    Pu, Xianjie
    Xi, Yi
    Wang, Xue
    Guo, Hengyu
    Hu, Chenguo
    Wang, Zhong Lin
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [22] Sliding triboelectric nanogenerator with staggered electrodes
    Lee, Yongjoo
    Kang, Seong Gu
    Jeong, Jaehwa
    NANO ENERGY, 2021, 86
  • [23] Non-Contact Triboelectric Nanogenerator
    Fu, Xiaofei
    Pan, Xiaosen
    Liu, Yang
    Li, Jie
    Zhang, Zhengjian
    Liu, Hongbin
    Gao, Meng
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (52)
  • [24] Going slippery for a robust triboelectric nanogenerator
    Wenluan Zhang
    Qiangqiang Sun
    Xu Deng
    National Science Review, 2019, 6 (06) : 1066 - 1067
  • [25] All-printed triboelectric nanogenerator
    Seol, Myeong-Lok
    Han, Jin-Woo
    Moon, Dong-Il
    Yoon, Kyung Jean
    Hwang, Cheol Seong
    Meyyappan, M.
    NANO ENERGY, 2018, 44 : 82 - 88
  • [26] Simulation of gas sensing with a triboelectric nanogenerator
    Zhao, Kaiqin
    Gan, Hua
    Li, Huan
    Liu, Ziyu
    Zhu, Zhiyuan
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2021, 12 : 507 - 516
  • [27] Simulation of Gas Sensing with a Triboelectric Nanogenerator
    Zhao K.
    Gan H.
    Li H.
    Liu Z.
    Zhu Z.
    Beilstein Journal of Nanotechnology, 2021, 12 : 507 - 516
  • [28] Going slippery for a robust triboelectric nanogenerator
    Zhang, Wenluan
    Sun, Qiangqiang
    Deng, Xu
    NATIONAL SCIENCE REVIEW, 2019, 6 (06) : 1066 - 1067
  • [29] Triboelectric Nanogenerator Assisted by Machine Learning
    Yang, Dongfang
    Shang, Yuchao
    Li, Zhaoting
    Wang, Kai
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (12) : 6549 - 6570
  • [30] A brief review of nonlinear triboelectric nanogenerator
    Tan, Dongguo
    Wang, Kai
    Zhou, Jiaxi
    Peng, Jian
    Wang, Qiang
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (06) : 2072 - 2092