A new method to identify influential nodes based on relative entropy

被引:50
|
作者
Fei, Liguo [1 ]
Deng, Yong [1 ,2 ,3 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Integrated Automat, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[3] Vanderbilt Univ, Sch Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
基金
中国国家自然科学基金;
关键词
Complex networks; Influential nodes; Centrality measure; Relative entropy; TOPSIS; COMPLEX NETWORKS; WEIGHTED NETWORKS; BELIEF STRUCTURES; FAILURE MODE; D NUMBERS; CENTRALITY; MATRIX; FLOW; IDENTIFICATION; PAYOFFS;
D O I
10.1016/j.chaos.2017.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How to identify influential nodes is still an open and vital issue in complex networks. To address this problem, a lot of centrality measures have been developed, however, only single measure is focused on by the existing studies, which has its own shortcomings. In this paper, a novel method is proposed to identify influential nodes using relative entropy and TOPSIS method, which combines the advantages of existing centrality measures. Because information flow spreads in different ways in different networks. In the specific network, the appropriate centrality measures should be considered to sort the nodes. In addition, the remoteness between the alternative and the positive/negetive ideal solution is redefined based on relative entropy, which is proven to be more effective in TOPSIS method. To demonstrate the effectiveness of the proposed method, four real networks are selected to conduct several experiments for identifying influential nodes, and the advantages of the method can be illustrated based on the experimental results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 50 条
  • [31] Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength
    Xi, Ying
    Cui, Xiaohui
    ENTROPY, 2023, 25 (05)
  • [32] Using LTI Dynamics to Identify the Influential Nodes in a Network
    Muric, Goran
    Jorswieck, Eduard
    Scheunert, Christian
    PLOS ONE, 2016, 11 (12):
  • [33] The random walk-based gravity model to identify influential nodes in complex networks
    Zhao, Jie
    Wen, Tao
    Jahanshahi, Hadi
    Cheong, Kang Hao
    INFORMATION SCIENCES, 2022, 609 : 1706 - 1720
  • [34] A novel measure to identify influential nodes in complex networks based on network global efficiency
    Zhang, Tingping
    Fang, Bin
    Liang, Xinyu
    MODERN PHYSICS LETTERS B, 2015, 29 (28):
  • [35] A New Method for Identifying Influential Nodes and Important Edges in Complex Networks
    ZHANG Wei
    XU Jia
    LI Yuanyuan
    Wuhan University Journal of Natural Sciences, 2016, 21 (03) : 267 - 276
  • [36] A graph-traversal approach to identify influential nodes in a network
    Liu, Yan
    Wei, Xiaoqi
    Chen, Wenfang
    Hu, Lianyu
    He, Zengyou
    PATTERNS, 2021, 2 (09):
  • [37] Identifying influential nodes in complex networks based on network embedding and local structure entropy
    Lu, Pengli
    Yang, Junxia
    Zhang, Teng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (08):
  • [38] Identifying Influential Nodes in Complex Networks Based on Multiple Local Attributes and Information Entropy
    Zhang, Jinhua
    Zhang, Qishan
    Wu, Ling
    Zhang, Jinxin
    ENTROPY, 2022, 24 (02)
  • [39] A modified weighted TOPSIS to identify influential nodes in complex networks
    Hu, Jiantao
    Du, Yuxian
    Mo, Hongming
    Wei, Daijun
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 73 - 85
  • [40] A modified efficiency centrality to identify influential nodes in weighted networks
    Yunchuan Wang
    Shasha Wang
    Yong Deng
    Pramana, 2019, 92