Topological dynamical systems associated to II1-factors

被引:24
|
作者
Brown, Nathanial P. [1 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
II1-factors; Homomorphisms; Dynamical system; Ultraproduct; VON-NEUMANN ALGEBRA; RANDOM MATRICES; FREE ENTROPY; PROPERTY-T;
D O I
10.1016/j.aim.2011.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If N subset of R-omega is a separable II1-factor, the space Hom(N, R-omega) of unitary equivalence classes of unital *-homomorphisms N -> R-omega is shown to have a surprisingly rich structure. If N is not hyperfinite, Hom(N, R-omega) is an infinite-dimensional, complete, metrizable topological space with convex-like structure, and the outer automorphism group Out(N) acts on it by "affine" homeomorphisms. (If N congruent to R, then Hom(N, R-omega) is just a point.) Property (T) is reflected in the extreme points - they're discrete in this case. For certain free products N = Sigma * R, every countable group acts nontrivially on Hom(N, R-omega), and we show the extreme points are not discrete for these examples. Finally, we prove that the dynamical systems associated to free group factors are isomorphic. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1665 / 1699
页数:35
相关论文
共 50 条
  • [31] A CHARACTERIZATION OF μ-EQUICONTINUITY FOR TOPOLOGICAL DYNAMICAL SYSTEMS
    Garcia-Ramos, Felipe
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3357 - 3368
  • [32] Attractors for dynamical systems in topological spaces
    Marzocchi, A
    Necca, SZ
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 585 - 597
  • [33] C*-algebras and topological dynamical systems
    Tomiyama, J
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (05) : 741 - 760
  • [34] On properties of the topological entropy of dynamical systems
    A. N. Vetokhin
    [J]. Mathematical Notes, 2013, 93 : 373 - 381
  • [35] Topological analysis of chaotic dynamical systems
    Gilmore, R
    [J]. REVIEWS OF MODERN PHYSICS, 1998, 70 (04) : 1455 - 1529
  • [36] ALMOST TOPOLOGICAL DYNAMICAL-SYSTEMS
    DENKER, M
    KEANE, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (1-2) : 139 - 160
  • [37] Bohr chaoticity of topological dynamical systems
    Aihua Fan
    Shilei Fan
    Valery V. Ryzhikov
    Weixiao Shen
    [J]. Mathematische Zeitschrift, 2022, 302 : 1127 - 1154
  • [38] ENTROPY DIMENSION OF TOPOLOGICAL DYNAMICAL SYSTEMS
    Dou, Dou
    Huang, Wen
    Park, Kyewon Koh
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) : 659 - 680
  • [39] Rapid fluctuation for topological dynamical systems
    Yu Huang
    Yi Zhou
    [J]. Frontiers of Mathematics in China, 2009, 4 : 483 - 494
  • [40] Ubiquity of odometers in topological dynamical systems
    D'Aniello, Emma
    Darji, Udayan B.
    Steele, T. H.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2008, 156 (02) : 240 - 245