Propagation of a cos-Gaussian beam in a Kerr medium

被引:11
|
作者
Chen, Ruipin [1 ,2 ,3 ]
Ni, Yongzhou [1 ]
Chu, XiuXiang [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Lin An 311300, Zhejiang, Peoples R China
[2] Nanjing Univ, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
来源
OPTICS AND LASER TECHNOLOGY | 2011年 / 43卷 / 03期
关键词
Nonlinear optics; Kerr effect; Cos Gaussian beam; COMPLEX OPTICAL-SYSTEMS; TURBULENT ATMOSPHERE; LASER-BEAMS;
D O I
10.1016/j.optlastec.2010.07.005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamic properties of cos-Gaussian beams in the presence of Kerr nonlinearity are investigated analytically and numerically using the nonlinear Schrodinger equation (NLS) Based on the moments method evolution of a cos-Gaussian beam width in the root-mean-square (RMS) sense is obtained analytically The beam propagation factors and the critical powers of the cos-Gaussian beams with a uniform wavefront are calculated Using numerical simulation it is found that although the RMS beam width broadens the central parts of the beam give rise to an initial radial compression and a significant redistribution during propagation The partial collapse of central parts of the beam is observed below the threshold for a global collapse The cos-Gaussian beams eventually convert into cosh-Gaussian type beams in Kerr media with low initial power (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:483 / 487
页数:5
相关论文
共 50 条
  • [31] PROPAGATION OF A WAVE BEAM IN THE ACTIVE MEDIUM WITH RESONANCE AND KERR NONLINEARITIES
    MILOVSKIJ, ND
    RUSOV, NY
    YASTREBOVA, TV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1982, 25 (02): : 148 - 156
  • [33] Elliptical Gaussian beam propagation in inhomogeneous and nonlinear fibres of Kerr type
    Pawel Berczynski
    Optical and Quantum Electronics, 2014, 46 : 945 - 974
  • [34] Propagation of an asymmetric Gaussian beam in a nonlinear absorbing medium
    Ianetz, D.
    Kaganovskii, Yu.
    Wilson-Gordon, A. D.
    Rosenbluh, M.
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [35] Numerical simulation of a Gaussian beam profile passing through a Kerr medium
    Koushki, E.
    Mousavi, S. H.
    Ara, M. H. Majles
    Koushki, A.
    CURRENT APPLIED PHYSICS, 2009, 9 (06) : 1347 - 1350
  • [36] The evolution and interaction of the asymmetric Pearcey–Gaussian beam in nonlinear Kerr medium
    Su Zhang
    Feng Zang
    Lijuan Dong
    Lu Li
    Applied Physics B, 2022, 128
  • [37] Reflection of a Gaussian Beam from a Magnetized Medium in the Polar Kerr Geometry
    Zlodeev, I. V.
    Nasedkina, Yu. F.
    Sementsov, D. I.
    OPTICS AND SPECTROSCOPY, 2015, 118 (02) : 310 - 316
  • [38] Effect of a thin optical Kerr medium on a Laguerre-Gaussian beam
    Zhang, Weiya
    Kuzyk, Mark G.
    APPLIED PHYSICS LETTERS, 2006, 89 (10)
  • [39] Reflection of a Gaussian beam from a magnetized medium in the polar Kerr geometry
    I. V. Zlodeev
    Yu. F. Nasedkina
    D. I. Sementsov
    Optics and Spectroscopy, 2015, 118 : 310 - 316
  • [40] Periodically revived elliptical cos-Gaussian solitons and breathers in nonlocal nonlinear Schrodinger equation
    Dai, Zhi-Ping
    Zeng, Qiao
    Shen, Shuang
    Yang, Zhen-Jun
    RESULTS IN PHYSICS, 2021, 23