PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

被引:32
|
作者
Cota, Steve A. [1 ]
Bell, Jabin T. [1 ]
Boucher, Richard H. [2 ]
Dutton, Tracy E. [1 ]
Florio, Christopher J. [1 ]
Franz, Geoffrey A. [1 ]
Grycewicz, Thomas J. [1 ]
Kalman, Linda S. [1 ]
Keller, Robert A. [2 ]
Lomheim, Terrence S. [2 ]
Paulson, Diane B. [1 ]
Wilkinson, Timothy S. [2 ]
机构
[1] Aerosp Corp, Chantilly, VA 20151 USA
[2] Aerosp Corp, El Segundo, CA 90245 USA
来源
关键词
image quality; remote sensing; satellites; imaging systems; QUALITY;
D O I
10.1117/1.3457476
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] A Non-Intrusive Tool Chain to Optimize MPSoC End-to-End Systems
    France-Pillois, Maxime
    Martin, Jerome
    Rousseau, Frederic
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2021, 18 (02)
  • [42] Airborne SAR in an end-to-end system for sustainable forest management
    Greidanus, H
    Hoekman, DH
    Grim, RJA
    Looyen, WJ
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1078 - 1080
  • [43] End-to-End Learning for Image Burst Deblurring
    Wieschollek, Patrick
    Schoelkopf, Bernhard
    Lensch, Hendrik P. A.
    Hirsch, Michael
    [J]. COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 35 - 51
  • [44] END-TO-END LEARNED IMAGE COMPRESSION WITH CONDITIONAL LATENT SPACE MODELING FOR ENTROPY CODING
    Yesilyurt, Aziz Berkay
    Kamisli, Fatih
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 501 - 505
  • [45] End-to-End Optimized ROI Image Compression
    Cai, Chunlei
    Chen, Li
    Zhang, Xiaoyun
    Gao, Zhiyong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3442 - 3457
  • [46] Efficient end-to-end multispectral image compression
    Depoian, Arthur C., II
    Bailey, Colleen P.
    Guturu, Parthasarathy
    [J]. BIG DATA VI: LEARNING, ANALYTICS, AND APPLICATIONS, 2024, 13036
  • [47] End-to-End FusVAE for Face Image Fusion
    Li, Xiang
    Chen, Bo
    Wen, Meijin
    Wang, Haoshuang
    [J]. 2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [48] End-to-End Deep ROI Image Compression
    Akutsu, Hiroaki
    Naruko, Takahiro
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (05): : 1031 - 1038
  • [49] End-to-end programmable computing systems
    Yao Xiao
    Guixiang Ma
    Nesreen K. Ahmed
    Mihai Capotă
    Theodore L. Willke
    Shahin Nazarian
    Paul Bogdan
    [J]. Communications Engineering, 2 (1):
  • [50] AN EFFICIENT END-TO-END IMAGE COMPRESSION TRANSFORMER
    Jeny, Afsana Ahsan
    Junayed, Masum Shah
    Islam, Md Baharul
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1786 - 1790