Unsupervised Machine Learning Approach for Gene Expression Microarray Data Using Soft Computing Technique

被引:1
|
作者
Rana, Madhurima [1 ]
Vijayeeta, Prachi [1 ]
Kar, Utsav [1 ]
Das, Madhabananda [1 ]
Mishra, B. S. P. [1 ]
机构
[1] KIIT Univ, Bhubaneswar, Orissa, India
关键词
Gene expression; Microarray data; Principal component analysis (PCA); Hierarchical clustering (HC); Cat swarm optimization (CSO); CLUSTER-ANALYSIS;
D O I
10.1007/978-81-322-2538-6_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning is a burgeoning technology used for extractions of knowledge from an ocean of data. It has robust binding with optimization and artificial intelligence that delivers theory, methodologies and application domain to the field of statistics and computer science. Machine learning tasks are broadly classified into two groups namely supervised learning and unsupervised learning. The analysis of the unsupervised data requires thorough computational activities using different clustering algorithms. Microarray gene expression data are taken into consideration for cluster regulating genes from non-regulating genes. In our work optimization technique (Cat Swarm Optimization) is used to minimize the number of cluster by evaluating the Euclidean distance among the centroids. A comparative study is being carried out by clustering the regulating genes before optimization and after optimization. In our work Principal component analysis (PCA) is incorporated for dimensionality reduction of vast dataset to ensure qualitative cluster analysis.
引用
收藏
页码:497 / 506
页数:10
相关论文
共 50 条
  • [31] Microarray-Based Cancer Prediction Using Soft Computing Approach
    Wang, Xiaosheng
    Gotoh, Osamu
    CANCER INFORMATICS, 2009, 7 : 123 - 139
  • [32] An unsupervised machine learning approach using passive movement data to understand depression and schizophrenia
    Price, George D.
    Heinz, Michael V.
    Zhao, Daniel
    Nemesure, Matthew
    Ruan, Franklin
    Jacobson, Nicholas C.
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 316 : 132 - 139
  • [33] Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review
    Osama, Sarah
    Shaban, Hassan
    Ali, Abdelmgeid A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [34] A novel deep learning approach for tracking with soft computing technique
    Mohan, Krishna A.
    Reddy, P. V. N.
    Prasad, Satya K.
    INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2022, 18 (05) : 678 - 685
  • [35] A Two Step Unsupervised Learning Approach to Diagnose Machine Fault Using Big Data
    Sharmila, V. J.
    Florinabel, D. Jemi
    INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (01): : 78 - 85
  • [36] Using random forest similarities in unsupervised learning: Applications to microarray data
    Shi, T
    Horvath, S
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 883 - 886
  • [37] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [38] A Secure Data Classification Model in Cloud Computing Using Machine Learning Approach
    Kaur, Kulwinder
    Zandu, Vikas
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (08): : 13 - 21
  • [39] Gene expression data classification using topology and machine learning models
    Tamal K. Dey
    Sayan Mandal
    Soham Mukherjee
    BMC Bioinformatics, 22
  • [40] A Robust Procedure for Machine Learning Algorithms Using Gene Expression Data
    Auwul, Md Rabiul
    Zhang, Chongqi
    Shahjaman, Md
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (02): : 2422 - 2439