Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds

被引:31
|
作者
Vangapally, Sairam [2 ]
Agarwal, Kuldeep [1 ]
Sheldon, Alex [1 ]
Cai, Shaobiao [2 ]
机构
[1] Minnesota State Univ, Dept Automot & Mfg Engn Technol, Mankato, MN 56001 USA
[2] Minnesota State Univ, Dept Mech & Civil Engn, Mankato, MN 56001 USA
关键词
Binder jet; Additive Manufacturing; Lattice Design; Stainless Steel;
D O I
10.1016/j.promfg.2017.07.069
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Scaffolds are 3D biocompatible structures that mimic the extracellular matrix properties (mechanical support, cellular activity and protein production) of bones and provide place for cell attachment and bone tissue formation. Their performance depends on chemistry, pore size, pore volume and mechanical strength. Open and interconnected pores allow nutrients and molecules to transport to inner parts of scaffold. Recently, additive manufacturing (AM) has been used as a means to produce these scaffolds. However, there is a need to study the various lattice designs and process parameters of these AM processes to produce the required scaffolds. In this study, the relationship between different lattice designs of additively manufactured scaffolds and their mechanical properties was studied. Four lattice geometries were fabricated with binder jet AM process with Stainless Steel 316 (SS316) as material. We also studied effect of process parameters such as sintering time and sintering temperature on dimensional accuracy and mechanical properties of these geometries. The results showed that the samples with circular geometry have superior mechanical properties compared to others. Trends were obtained on the influence of different lattice designs on compressive strength of the material. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:750 / 759
页数:10
相关论文
共 50 条
  • [41] Computational modeling of the effects of process parameters on the grain morphology of additively manufactured stainless steel
    Ataollahi, Saeed
    Mahtabi, MohammadBagher
    Yadollahi, Aref
    Mahtabi, Mohammad J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 125 (7-8): : 3513 - 3526
  • [42] Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel
    Vandzura, Radoslav
    Simkulet, Vladimir
    Botko, Frantisek
    Gel'atko, Matus
    Hatala, Michal
    MATERIALS, 2024, 17 (12)
  • [43] Computational modeling of the effects of process parameters on the grain morphology of additively manufactured stainless steel
    Ataollahi, Saeed
    Mahtabi, MohammadBagher
    Yadollahi, Aref
    Mahtabi, Mohammad J.
    International Journal of Advanced Manufacturing Technology, 2023, 125 (7-8): : 3513 - 3526
  • [44] A review on the wear performance of additively manufactured 316L stainless steel: process, structure, and performance
    Ismat Ara
    Dilpreet Bajwa
    Amirmohammad Raeisi
    Journal of Materials Science, 2025, 60 (13) : 5686 - 5720
  • [45] Mechanical Properties and Behavior of Additive Manufactured Stainless Steel 316L
    Bevan, M. A.
    Ameri, A. A. H.
    East, D.
    Austin, D. C.
    Brown, A. D.
    Hazell, P. J.
    Escobedo-Diaz, J. P.
    CHARACTERIZATION OF MINERALS, METALS, AND MATERIALS 2017, 2017, : 577 - 583
  • [46] Effects of surface roughness on mechanical properties of laser-cladding additively manufactured 316L stainless steel sheets
    Kang, Lan
    Jin, Jufei
    Liu, Xinpei
    Chen, Haizhou
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 224
  • [47] Effect of laser-scan strategy on microstructure and fatigue properties of 316L additively manufactured stainless steel
    Roirand, Hugo
    Hor, Anis
    Malard, Benoit
    Saintier, Nicolas
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (01) : 32 - 48
  • [48] Effect of printing parameters on the structure and high strain rate deformation behavior of additively manufactured 316L stainless steel
    Hukpati, Kenneth
    Eliasu, Ali
    Tetteh, Francis
    Czekanski, Aleksander
    Boakye-Yiadom, Solomon
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 853
  • [49] High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel
    Agrawal, Ankur Kumar
    de Bellefon, Gabriel Meric
    Thoma, Dan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 793
  • [50] The combined influence of elevated pre-sintering and subsequent bronze infiltration on the microstructures and mechanical properties of 420 stainless steel additively manufactured via binder jet printing
    Lu S.L.
    Meenashisundaram G.K.
    Wang P.
    Nai S.M.L.
    Wei J.
    Nai, S.M.L. (mlnai@simtech.a-star.edu.sg), 1600, Elsevier B.V., Netherlands (34):