Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas

被引:29
|
作者
Sun, Luyi [1 ]
Chen, Jinsong [1 ]
Guo, Shanxin [1 ]
Deng, Xinping [1 ]
Han, Yu [1 ]
机构
[1] Shenzhen Univ Town, Chinese Acad Sci, Shenzhen Inst Adv Technol, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
oasis crop type mapping; Sentinel-1; and; 2; integration; statistically homogeneous pixels (SHPs); red-edge spectral bands and indices; recursive feature increment (RFI); random forest (RF); SPECTRAL REFLECTANCE; SAR DATA; CLASSIFICATION; COHERENCE; SELECTION;
D O I
10.3390/rs12010158
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Timely and accurate crop type mapping is a critical prerequisite for the estimation of water availability and environmental carrying capacity. This research proposed a method to integrate time series Sentinel-1 (S1) and Sentinel-2 (S2) data for crop type mapping over oasis agricultural areas through a case study in Northwest China. Previous studies using synthetic aperture radar (SAR) data alone often yield quite limited accuracy in crop type identification due to speckles. To improve the quality of SAR features, we adopted a statistically homogeneous pixel (SHP) distributed scatterer interferometry (DSI) algorithm, originally proposed in the interferometric SAR (InSAR) community for distributed scatters (DSs) extraction, to identify statistically homogeneous pixel subsets (SHPs). On the basis of this algorithm, the SAR backscatter intensity was de-speckled, and the bias of coherence was mitigated. In addition to backscatter intensity, several InSAR products were extracted for crop type classification, including the interferometric coherence, master versus slave intensity ratio, and amplitude dispersion derived from SAR data. To explore the role of red-edge wavelengths in oasis crop type discrimination, we derived 11 red-edge indices and three red-edge bands from Sentinel-2 images, together with the conventional optical features, to serve as input features for classification. To deal with the high dimension of combined SAR and optical features, an automated feature selection method, i.e., recursive feature increment, was developed to obtain the optimal combination of S1 and S2 features to achieve the highest mapping accuracy. Using a random forest classifier, a distribution map of five major crop types was produced with an overall accuracy of 83.22% and kappa coefficient of 0.77. The contribution of SAR and optical features were investigated. SAR intensity in VH polarization was proved to be most important for crop type identification among all the microwave and optical features employed in this study. Some of the InSAR products, i.e., the amplitude dispersion, master versus slave intensity ratio, and coherence, were found to be beneficial for oasis crop type mapping. It was proved the inclusion of red-edge wavelengths improved the overall accuracy (OA) of crop type mapping by 1.84% compared with only using conventional optical features. In comparison, it was demonstrated that the synergistic use of time series Sentinel-1 and Sentinel-2 data achieved the best performance in the oasis crop type discrimination.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery
    Xun, Lan
    Zhang, Jiahua
    Cao, Dan
    Yang, Shanshan
    Yao, Fengmei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 181 : 148 - 166
  • [32] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [33] Tree-fruits crop type mapping from Sentinel-1 and Sentinel-2 data integration in Egypt?s New Delta project
    Nabil, Mohsen
    Farg, Eslam
    Arafat, Sayed M.
    Aboelghar, Mohamed
    Afify, Nagwan M.
    Elsharkawy, Mohamed M.
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 27
  • [34] Using Sentinel-1 and Sentinel-2 Time Series for Slangbos Mapping in the Free State Province, South Africa
    Urban, Marcel
    Schellenberg, Konstantin
    Morgenthal, Theunis
    Dubois, Clemence
    Hirner, Andreas
    Gessner, Ursula
    Mogonong, Buster
    Zhang, Zhenyu
    Baade, Jussi
    Collett, Anneliza
    Schmullius, Christiane
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [35] DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY
    Kussul, Nataliia
    Lavreniuk, Mykola
    Shumilo, Leonid
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6914 - 6917
  • [36] Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images
    Wang, Jie
    Xiao, Xiangming
    Liu, Luo
    Wu, Xiaocui
    Qin, Yuanwei
    Steiner, Jean L.
    Dong, Jinwei
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [37] Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel
    Schulz, Dario
    Yin, He
    Tischbein, Bernhard
    Verleysdonk, Sarah
    Adamou, Rabani
    Kumar, Navneet
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 97 - 111
  • [38] Integrating Sentinel-1 SAR and Sentinel-2 optical imagery with a crop structure dynamics model to track crop condition
    Jiao, Xianfeng
    McNairn, Heather
    Yekkehkhany, Bahareh
    Robertson, Laura Dingle
    Ihuoma, Samuel
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (17) : 6509 - 6537
  • [39] FIELD SCALE SOIL MOISTURE FROM TIME SERIES OF SENTINEL-1 & SENTINEL-2
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Palmisano, Davide
    D'Addabbo, Annarita
    Lovergine, Francesco
    [J]. 2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 176 - 179
  • [40] Swin Transformer for Complex Coastal Wetland Classification Using the Integration of Sentinel-1 and Sentinel-2 Imagery
    Jamali, Ali
    Mahdianpari, Masoud
    [J]. WATER, 2022, 14 (02)