Using parameter sensitivity and interdependence to predict model scope and falsifiability

被引:20
|
作者
Li, SC
Lewandowsky, S
DeBrunner, VE
机构
[1] MCGILL UNIV,DEPT PSYCHOL,MONTREAL,PQ,CANADA
[2] UNIV LAVAL,DEPT PSYCHOL,LAVAL,PQ,CANADA
[3] UNIV WESTERN AUSTRALIA,DEPT PSYCHOL,NEDLANDS,WA 6009,AUSTRALIA
[4] UNIV OKLAHOMA,SCH ELECT & COMP ENGN,NORMAN,OK 73019
关键词
D O I
10.1037/0096-3445.125.4.360
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
One important criterion for a model's utility is its scope, the ability to predict a wide range of results. Scope is often difficult to ascertain without extensive data fitting, For example, J. E. Cutting, N. Bruno, N. P. Brady, and C. Moore (1992) compared 2 models of perceived visual depth by fitting many data sets that were arbitrarily generated from underlying functions. They then defined scope as the number of functions a model could account for. We present an alternative technique for scope evaluation that is based on analysis of the behavior of a model's parameters and does not require extensive data fitting. The technique examines the ratio between the overall interdependence among model parameters and their sensitivity, which we show to be inversely related to a model's scope.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
  • [1] OPC model enhancement using parameter sensitivity methodology
    Ward, Brian S.
    Drapeau, Martin
    [J]. PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY XV, PTS 1 AND 2, 2008, 7028
  • [2] Parameter interdependence and uncertainty induced by lumping in a hydrologic model
    Gallagher, Mark R.
    Doherty, John
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (05)
  • [3] DISTRIBUTED PARAMETER-IDENTIFICATION OF A PIPELINE USING A SENSITIVITY MODEL
    FANG, CZ
    TAO, LW
    [J]. JOURNAL OF PIPELINES, 1987, 7 (01): : 53 - 63
  • [4] PARAMETER SENSITIVITY OF THE CARBIDE MODEL
    WINTZER, W
    SCHREIER, M
    BUDDE, K
    [J]. CHEMISCHE TECHNIK, 1983, 35 (11): : 602 - 602
  • [6] Using Parameter Joint Model to Predict The Grain Yield of Guangxi Province
    Li, Dewang
    Qiu, Meilan
    [J]. MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3, 2012, 591-593 : 2509 - +
  • [7] Exploring snow model parameter sensitivity using Sobol' variance decomposition
    Houle, Elizabeth S.
    Livneh, Ben
    Kasprzyk, Joseph R.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 89 : 144 - 158
  • [8] Process verification of a hydrological model using a temporal parameter sensitivity analysis
    Pfannerstill, M.
    Guse, B.
    Reusser, D.
    Fohrer, N.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (10) : 4365 - 4376
  • [9] SENSITIVITY OF THE EOQ MODEL TO PARAMETER ESTIMATES
    DOBSON, G
    [J]. OPERATIONS RESEARCH, 1988, 36 (04) : 570 - 574
  • [10] SENSITIVITY OF WEIBULL MODEL PARAMETER ESTIMATES
    THAL, WM
    CAMPBELL, CL
    MADDEN, LV
    [J]. PHYTOPATHOLOGY, 1983, 73 (02) : 376 - 376