Exploring snow model parameter sensitivity using Sobol' variance decomposition

被引:21
|
作者
Houle, Elizabeth S. [1 ]
Livneh, Ben [1 ,2 ]
Kasprzyk, Joseph R. [1 ]
机构
[1] Univ Colorado Boulder, Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Snow hydrology; Parameter sensitivity; Snow modeling; Snow water equivalent; Model performance; Sobol' sensitivity analysis; ENVIRONMENTAL-MODELS; CLIMATE-CHANGE; PRECIPITATION; WATER; UNCERTAINTY; EXAMPLE; FLUXES;
D O I
10.1016/j.envsoft.2016.11.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study advances model diagnostics for snowmelt-based hydrological systems using Sobol' sensitivity analysis, illuminating parameter sensitivities and contrasting model structural differences. We consider several distinct snow-dominated locations in the western United States, running both SNOW-17, a conceptual degree-day model, and the Variable Infiltration Capacity (VIC) snow model, a physically based model. Model performance is rigorously evaluated through global sensitivity analysis and a temperature warming analysis is conducted to explore how model parameterizations affect portrayals of climate change. Both VIC and SNOW-17 produce comparable results with SNOW-17 performing slightly better for shallower snowpacks and VIC performing better for deeper snowpacks. However, the lack of sensitivity of SNOW-17 to climate warming suggests that it may not be as reliable as a more sensitive model like VIC. Inter-model differences presented here offer insights into physical features with greatest uncertainty and may inform future model development and planning activities. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 158
页数:15
相关论文
共 50 条
  • [1] Implementation of Sobol's sensitivity analysis to cyclic plasticity model with parameter uncertainty
    Du, Weiqi
    Li, Shuxin
    Luo, Yuanxin
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022, 155
  • [2] A sensitivity analysis of a human exposure model using the Sobol method
    John Langstaff
    Graham Glen
    Chris Holder
    Stephen Graham
    Kristin Isaacs
    [J]. Stochastic Environmental Research and Risk Assessment, 2022, 36 : 3945 - 3960
  • [3] A sensitivity analysis of a human exposure model using the Sobol method
    Langstaff, John
    Glen, Graham
    Holder, Chris
    Graham, Stephen
    Isaacs, Kristin
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (11) : 3945 - 3960
  • [4] Variance based sensitivity analysis of deep drawing processes based on neural networks using Sobol indices
    Kott, M.
    Kraft, M.
    Emrich, A.
    Groche, P.
    [J]. INTERNATIONAL DEEP-DRAWING RESEARCH GROUP CONFERENCE (IDDRG 2021), 2021, 1157
  • [5] Variance decomposition using an IRT measurement model
    van den Berg, Stephanie M.
    Glas, Cees A. W.
    Boomsma, Dorret I.
    [J]. BEHAVIOR GENETICS, 2007, 37 (04) : 604 - 616
  • [6] Variance Decomposition Using an IRT Measurement Model
    Stéphanie M. van den Berg
    Cees A. W. Glas
    Dorret I. Boomsma
    [J]. Behavior Genetics, 2007, 37 : 604 - 616
  • [7] Sobol' sensitivity analysis of a complex environmental model
    Nossent, Jiri
    Elsen, Pieter
    Bauwens, Willy
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (12) : 1515 - 1525
  • [8] Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
    He, Minxue
    Hogue, Terri S.
    Franz, Kristie J.
    Margulis, Steven A.
    Vrugt, Jasper A.
    [J]. ADVANCES IN WATER RESOURCES, 2011, 34 (01) : 114 - 127
  • [9] Optimal sampling using singular value decomposition of the parameter variance space
    Popa, DO
    Sanderson, AC
    Hombal, V
    [J]. 2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 1154 - 1159
  • [10] Estimating Sobol sensitivity indices using correlations
    Glen, Graham
    Isaacs, Kristin
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 37 : 157 - 166