Magnetic Inertial Confinement Fusion (MICF)

被引:2
|
作者
Feng, Miao [1 ,4 ]
Zheng Xianjun [2 ]
Deng Baiquan [3 ]
Wei, Liu [2 ]
Wei, Ou [5 ]
Yi, Huang [4 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[2] HOPE Innovat Inc, Toronto, ON L4W 0A5, Canada
[3] Southwestern Inst Phys, Chengdu 610041, Peoples R China
[4] Southwest Univ Nationalities, Chengdu 610041, Peoples R China
[5] Sichuan Univ, Inst Nucl Sci & Technol, Chengdu 610064, Peoples R China
来源
PLASMA SCIENCE & TECHNOLOGY | 2016年 / 18卷 / 11期
关键词
MICF; centripetal spherical pinch; beam-target enhancement;
D O I
10.1088/1009-0630/18/11/01
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on the similarity in models of the early Sun and the 3-D common focal region of the micro-pinch in X-pinch experiments, a novel hybrid fusion configuration by continuous focusing of multiple Z-pinched plasma beams on spatially symmetric plasma is proposed. By replacing gravity with Lorentz force with subsequent centripetal spherical pinch, the beam target fusion reactivity is enhanced in a quasi-spherical converging region, thus achieving MICF. An assessment, presented here, suggests that a practical fusion power source could be achieved using deuterium alone. Plasma instabilities can be suppressed by fast rotation resulting from an asymmetric tangential torsion in the spherical focal region of this configuration. Mathematical equivalence with the Sun allows the development of appropriate equations for the focal region of MICF, which are solved numerically to provide density, temperature and pressure distributions that produce net fusion energy output. An analysis of MICF physics and a preliminary experimental demonstration of a single beam are also carried out.
引用
收藏
页码:1055 / 1063
页数:9
相关论文
共 50 条
  • [41] REQUIREMENTS FOR COMMERCIALIZATION OF INERTIAL CONFINEMENT FUSION
    BOOTH, LA
    BOHACHEVSKY, IO
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 27 (NOV): : 15 - 16
  • [42] Inertial-confinement fusion with lasers
    R. Betti
    O. A. Hurricane
    [J]. Nature Physics, 2016, 12 (5) : 435 - 448
  • [43] Target support for inertial confinement fusion
    Schultz, KR
    [J]. JOURNAL OF FUSION ENERGY, 1995, 14 (02) : 187 - 190
  • [44] RECENT TRENDS IN INERTIAL CONFINEMENT FUSION
    KIDDER, RE
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 925 - 925
  • [45] Inertial confinement fusion: a defence context
    Randewich, Andrew
    Lock, Rob
    Garbett, Warren
    Bethencourt-Smith, Dominic
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2184):
  • [46] MICROFABRICATION METHODS FOR INERTIAL CONFINEMENT FUSION
    DECKMAN, HW
    [J]. THIN SOLID FILMS, 1982, 96 (01) : 109 - 111
  • [47] PLASMA PHYSICS - INERTIAL CONFINEMENT OF FUSION
    KEY, MH
    EVANS, RG
    [J]. NATURE, 1985, 313 (5998) : 94 - 95
  • [48] Inertial confinement fusion neutron images
    Disdier, L.
    Rouyer, A.
    Lantuejoul, I.
    Landoas, O.
    Bourgade, J. L.
    Sangster, T. C.
    Glebov, V. Yu.
    Lerche, R. A.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [49] THERMONUCLEAR FUSION - INERTIAL CONFINEMENT IN TROUBLE
    BEARDSLEY, T
    [J]. NATURE, 1985, 315 (6022) : 706 - 706
  • [50] Inertial confinement fusion program at CAEP
    Peng, HS
    [J]. LASER INTERACTION AND RELATED PLASMA PHENOMENA, 1996, (369): : 61 - 70