Chemically derived, ultrasmooth graphene nanoribbon semiconductors

被引:4076
|
作者
Li, Xiaolin [1 ,2 ]
Wang, Xinran [1 ,2 ]
Zhang, Li [1 ,2 ]
Lee, Sangwon [1 ,2 ]
Dai, Hongjie [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Adv Mat Lab, Stanford, CA 94305 USA
关键词
D O I
10.1126/science.1150878
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We developed a chemical route to produce graphene nanoribbons ( GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice- defined graphene junctions for potential molecular electronics. The GNRs were solution-phase - derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well- defined zigzag or armchair- edge structures. Electrical transport experiments showed that, unlike single- walled carbon nanotubes, all of the sub - 10- nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on- off ratios of about 10(7) at room temperature.
引用
收藏
页码:1229 / 1232
页数:4
相关论文
共 50 条
  • [1] Transport properties of chemically functionalized graphene nanoribbon
    Qu, C. Q.
    Wang, C. Y.
    Qiao, L.
    Yu, S. S.
    Li, H. B.
    [J]. CHEMICAL PHYSICS LETTERS, 2013, 578 : 97 - 101
  • [2] Defects and localization in chemically-derived graphene
    Ciric, L.
    Sienkiewicz, A.
    Gaal, R.
    Jacimovic, J.
    Vaju, C.
    Magrez, A.
    Forro, L.
    [J]. PHYSICAL REVIEW B, 2012, 86 (19):
  • [3] Graphitization behaviour of chemically derived graphene sheets
    Long, Donghui
    Li, Wei
    Qiao, Wenming
    Miyawaki, Jin
    Yoon, Seong-Ho
    Mochida, Isao
    Ling, Licheng
    [J]. NANOSCALE, 2011, 3 (09) : 3652 - 3656
  • [4] Graphene nanoribbon and graphene nanodisk
    Ezawa, Motohiko
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1421 - 1423
  • [5] Graphene Nanoribbon Composites
    Rafiee, Mohammad A.
    Lu, Wei
    Thomas, Abhay V.
    Zandiatashbar, Ardavan
    Rafiee, Javad
    Tour, James M.
    Koratkar, Nikhil A.
    [J]. ACS NANO, 2010, 4 (12) : 7415 - 7420
  • [6] Graphene nanoribbon heterojunctions
    Jinming Cai
    Carlo A. Pignedoli
    Leopold Talirz
    Pascal Ruffieux
    Hajo Söde
    Liangbo Liang
    Vincent Meunier
    Reinhard Berger
    Rongjin Li
    Xinliang Feng
    Klaus Müllen
    Roman Fasel
    [J]. Nature Nanotechnology, 2014, 9 : 896 - 900
  • [7] Graphene Nanoribbon Superconductor
    Mousavi, Hamze
    Grabowski, Marek
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (1-2) : 12 - 20
  • [8] Graphene nanoribbon heterojunctions
    Cai, Jinming
    Pignedoli, Carlo A.
    Talirz, Leopold
    Ruffieux, Pascal
    Soede, Hajo
    Liang, Liangbo
    Meunier, Vincent
    Berger, Reinhard
    Li, Rongjin
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (11) : 896 - 900
  • [9] Elastic properties of chemically derived single graphene sheets
    Gomez-Navarro, Cristina
    Burghard, Marko
    Kern, Klaus
    [J]. NANO LETTERS, 2008, 8 (07) : 2045 - 2049
  • [10] Noninvasive metal contacts in chemically derived graphene devices
    Sundaram, Ravi S.
    Gomez-Navarro, Cristina
    Lee, Eduardo J. H.
    Burghard, Marko
    Kern, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (22)