Graphene nanoribbon heterojunctions

被引:9
|
作者
Cai, Jinming [1 ]
Pignedoli, Carlo A. [1 ]
Talirz, Leopold [1 ]
Ruffieux, Pascal [1 ]
Soede, Hajo [1 ]
Liang, Liangbo [2 ]
Meunier, Vincent [2 ]
Berger, Reinhard [3 ]
Li, Rongjin [3 ]
Feng, Xinliang [3 ]
Muellen, Klaus [3 ]
Fasel, Roman [1 ,4 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol, Empa, CH-8600 Dubendorf, Switzerland
[2] Rensselaer Polytech Inst, Dept Phys, Troy, NY 12180 USA
[3] Max Planck Inst Polymer Res, D-55124 Mainz, Germany
[4] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
BAND-GAP;
D O I
10.1038/NNANO.2014.184
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Despite graphene's remarkable electronic properties(1,2), the lack of an electronic bandgap severely limits its potential for applications in digital electronics(3,4). In contrast to extended films, narrow strips of graphene (called graphene nanoribbons) are semiconductors through quantum confinement(5,6), with a bandgap that can be tuned as a function of the nanoribbon width and edge structure(7-10). Atomically precise graphene nanoribbons can be obtained via a bottom-up approach based on the surface-assisted assembly of molecular precursors(11). Here we report the fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents. Using scanning probe methods, we show that the resulting heterostructures consist of seamlessly assembled segments of pristine (undoped) graphene nanoribbons (p-GNRs) and deterministically nitrogen-doped graphene nanoribbons (N-GNRs), and behave similarly to traditional p-n junctions(12). With a band shift of 0.5 eV and an electric field of 2 x 10(8) V m(-1) at the heterojunction, these materials bear a high potential for applications in photovoltaics and electronics.
引用
收藏
页码:896 / 900
页数:5
相关论文
共 50 条
  • [1] Graphene nanoribbon heterojunctions
    Jinming Cai
    Carlo A. Pignedoli
    Leopold Talirz
    Pascal Ruffieux
    Hajo Söde
    Liangbo Liang
    Vincent Meunier
    Reinhard Berger
    Rongjin Li
    Xinliang Feng
    Klaus Müllen
    Roman Fasel
    [J]. Nature Nanotechnology, 2014, 9 : 896 - 900
  • [2] Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions
    Bronner, Christopher
    Durr, Rebecca A.
    Rizzo, Daniel J.
    Lee, Yea-Lee
    Marangoni, Tomas
    Kalayjian, Alin Miksi
    Rodriguez, Henry
    Zhao, William
    Louie, Steven G.
    Fischer, Felix R.
    Crommie, Michael F.
    [J]. ACS NANO, 2018, 12 (03) : 2193 - 2200
  • [3] Ballistic thermoelectric properties in graphene-nanoribbon-based heterojunctions
    Pan, Chang-Ning
    Xie, Zhong-Xiang
    Tang, Li-Ming
    Chen, Ke-Qiu
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [4] Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions
    Boris V. Senkovskiy
    Alexey V. Nenashev
    Seyed K. Alavi
    Yannic Falke
    Martin Hell
    Pantelis Bampoulis
    Dmitry V. Rybkovskiy
    Dmitry Yu. Usachov
    Alexander V. Fedorov
    Alexander I. Chernov
    Florian Gebhard
    Klaus Meerholz
    Dirk Hertel
    Masashi Arita
    Taichi Okuda
    Koji Miyamoto
    Kenya Shimada
    Felix R. Fischer
    Thomas Michely
    Sergei D. Baranovskii
    Klas Lindfors
    Thomas Szkopek
    Alexander Grüneis
    [J]. Nature Communications, 12
  • [5] Design of Graphene-Nanoribbon Heterojunctions from First Principles
    Li, Xiao-Fei
    Wang, Ling-Ling
    Chen, Ke-Qiu
    Luo, Yi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (25): : 12616 - 12624
  • [6] Magnetism and magnetic transport properties of the polycrystalline graphene nanoribbon heterojunctions
    Wang, D.
    Zhang, Z. H.
    Deng, X. Q.
    Fan, Z. Q.
    Tang, G. P.
    [J]. CARBON, 2016, 98 : 204 - 212
  • [7] Atomically Precise Graphene Nanoribbon Heterojunctions for Excitonic Solar Cells
    Liang, Liangbo
    Meunier, Vincent
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (01): : 775 - 783
  • [8] Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions
    Senkovskiy, Boris, V
    Nenashev, Alexey, V
    Alavi, Seyed K.
    Falke, Yannic
    Hell, Martin
    Bampoulis, Pantelis
    Rybkovskiy, Dmitry, V
    Usachov, Dmitry Yu
    Fedorov, Alexander, V
    Chernov, Alexander, I
    Gebhard, Florian
    Meerholz, Klaus
    Hertel, Dirk
    Arita, Masashi
    Okuda, Taichi
    Miyamoto, Koji
    Shimada, Kenya
    Fischer, Felix R.
    Michely, Thomas
    Baranovskii, Sergei D.
    Lindfors, Klas
    Szkopek, Thomas
    Grueneis, Alexander
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Topologically enhanced nonlinear optical response of graphene nanoribbon heterojunctions
    Hanying Deng
    Zhihao Qu
    Yingji He
    Changming Huang
    Nicolae C. Panoiu
    Fangwei Ye
    [J]. Quantum Frontiers, 2 (1):
  • [10] Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization
    Zhang, Jin-Jiang
    Liu, Kun
    Xiao, Yao
    Yu, Xiuling
    Huang, Li
    Gao, Hong-Jun
    Ma, Ji
    Feng, Xinliang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (41)