Integration of light-controlled neuronal firing and fast circuit imaging

被引:29
|
作者
Airan, Raag D. [1 ]
Hu, Elbert S. [1 ]
Vijaykumar, Ragu [1 ]
Roy, Madhuri [1 ]
Meltzer, Leslie A. [1 ]
Deisseroth, Karl [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.conb.2007.11.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For understanding normal and pathological circuit function, capitalizing on the full potential of recent advances in fast optical neural circuit control will depend crucially on fast, intact-circuit readout technology. First, millisecond-scale optical control will be best leveraged with simultaneous millisecond-scale optical imaging. Second, both fast circuit control and imaging should be adaptable to intact-circuit preparations from normal and diseased subjects. Here we illustrate integration of fast optical circuit control and fast circuit imaging, review recent work demonstrating utility of applying fast imaging to quantifying activity flow in disease models, and discuss integration of diverse optogenetic and chemical genetic tools that have been developed to precisely control the activity of genetically specified neural populations. Together these neuroengineering advances raise the exciting prospect of determining the role-specific cell types play in modulating neural activity flow in neuropsychiatric disease.
引用
收藏
页码:587 / 592
页数:6
相关论文
共 50 条
  • [31] Light-controlled DNA binding of bisbenzamidines
    Sanchez, Mateo I.
    Vazquez, Olalla
    Eugenio Vazquez, M.
    Mascarenas, Jose L.
    CHEMICAL COMMUNICATIONS, 2011, 47 (39) : 11107 - 11109
  • [32] Spiropyrans for light-controlled drug delivery
    Cardano, Francesca
    Del Canto, Elisa
    Giordani, Silvia
    DALTON TRANSACTIONS, 2019, 48 (41) : 15537 - 15544
  • [33] Light-Controlled Spin Filtering in Bacteriorhodopsin
    Einati, Hila
    Mishra, Debabrata
    Friedman, Noga
    Sheves, Mordechai
    Naaman, Ron
    NANO LETTERS, 2015, 15 (02) : 1052 - 1056
  • [34] Light-controlled flavonoid biosynthesis in fruits
    Zoratti, Laura
    Karppinen, Katja
    Escobar, Ana Luengo
    Haggman, Hely
    Jaakola, Laura
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [35] Light-Controlled Micromotors and Soft Microrobots
    Palagi, Stefano
    Singh, Dhruv P.
    Fischer, Peer
    ADVANCED OPTICAL MATERIALS, 2019, 7 (16)
  • [36] Light-Controlled Reactivity of Metal Complexes
    Heinze, Katja
    Wenger, Oliver S.
    INORGANIC CHEMISTRY, 2020, 59 (20) : 14627 - 14628
  • [37] Light-controlled flows in active fluids
    Dervaux, Julien
    Resta, Marina Capellazzi
    Brunet, Philippe
    NATURE PHYSICS, 2017, 13 (03) : 306 - 313
  • [38] Light-Controlled Nanoparticle Collision Experiments
    Wang, Qian
    Bae, Je Hyun
    Nepomnyashchii, Alexander B.
    Jia, Rui
    Zhang, Suojiang
    Mirkin, Michael, V
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (08): : 2972 - 2976
  • [39] LIGHT-CONTROLLED SEMICONDUCTOR WAVEGUIDE ANTENNA
    KARG, R
    KREUTZER, E
    ELECTRONICS LETTERS, 1977, 13 (09) : 246 - 247
  • [40] POLYSOME FORMATION IN LIGHT-CONTROLLED DORMANCY
    MITCHELL, RC
    VILLIERS, TA
    PLANT PHYSIOLOGY, 1972, 50 (06) : 671 - 674