Graphical temporal semi-supervised deep learning-based principal fault localization in wind turbine systems

被引:12
|
作者
Jiang, Na [1 ]
Hu, Xiangzhi [1 ]
Li, Ning [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ China, Key Lab Syst Control & Informat Proc, Dept Automat, Shanghai 200240, Peoples R China
关键词
Principal fault localization; faults chain; wind turbine systems; graphical temporal semi-supervised learning; deep learning; unlabeled data; multivariate time series; DIAGNOSIS; MODEL; CLASSIFICATION; ALGORITHM; NETWORKS;
D O I
10.1177/0959651819901034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal fault localization of the faults chain, as a branch of fault diagnosis in wind turbine system, has been an essential problem to ensure the reliability and security in the real wind farms recently. It can be solved by machine learning techniques with historical data labeled with principal faults. However, most real data are unlabeled, since the labeled is expensive to obtain, which increases the difficulty to localize the principal fault if just using unlabeled data and few labeled data. So, in this article, a novel approach using unlabeled data is proposed for principal fault localization of the faults chain in wind turbine systems. First, a deep learning model, stacked sparse autoencoders, is introduced to learn and extract high-level features from data. Then, we present a graphical temporal semi-supervised learning algorithm to develop the pseudo-labeled data set with an unlabeled data set. Considering the temporal correlation of wind power data, we add a time weight vector and apply the cosine-similarity in the proposed algorithm. Finally, based on the pseudo-labeled data set, a classifier model is built and trained for the principal fault localization of the faults chain. The proposed approach is verified by the real buffer data set collected from two wind farms in China, and the experimental results show its effectiveness in practice.
引用
收藏
页码:985 / 999
页数:15
相关论文
共 50 条
  • [21] An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning
    Wang, Zixuan
    Qin, Bo
    Sun, Haiyue
    Zhang, Jian
    Butala, Mark D.
    Demartino, Cristoforo
    Peng, Peng
    Wang, Hongwei
    RENEWABLE ENERGY, 2023, 212 : 251 - 262
  • [22] Semi-supervised deep extreme learning machine for Wi-Fi based localization
    Gu, Yang
    Chen, Yiqiang
    Liu, Junfa
    Jiang, Xinlong
    NEUROCOMPUTING, 2015, 166 : 282 - 293
  • [23] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Jian, Chuanxia
    Ao, Yinhui
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (07) : 3143 - 3158
  • [24] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Chuanxia Jian
    Yinhui Ao
    Journal of Intelligent Manufacturing, 2023, 34 : 3143 - 3158
  • [25] Fault diagnosis method based on online semi-supervised learning
    Yin, G. (gang.gang88@163.com), 1600, Nanjing University of Aeronautics an Astronautics (25):
  • [26] Semi-Supervised Learning-Based Image Denoising for Big Data
    Zhang, Kun
    Chen, Kai
    IEEE ACCESS, 2020, 8 : 172678 - 172691
  • [27] Semi-Supervised Learning-Based Method for Unknown Anomaly Detection
    Cheng, Yudong
    Zhou, Fang
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (07): : 1670 - 1680
  • [28] Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning
    Xueyi LI
    Jialin LI
    Yongzhi QU
    David HE
    Chinese Journal of Aeronautics , 2020, (02) : 418 - 426
  • [29] Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning
    Xueyi LI
    Jialin LI
    Yongzhi QU
    David HE
    Chinese Journal of Aeronautics, 2020, 33 (02) : 418 - 426
  • [30] A semi-supervised deep learning fault diagnosis method based on uncertainty estimation and weighted labels
    Huang, Hanxin
    Zhou, Funa
    Jia, Pengpeng
    Wen, Yanqi
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1410 - 1415