Kernel methods in machine learning

被引:1318
|
作者
Hofmann, Thomas [1 ]
Schoelkopf, Bernhard [2 ]
Smola, Alexander J. [3 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[2] Max Planck Inst Biol Cybernet, Tubingen, Germany
[3] Natl ICT Australia, Stat Machine Learning Program, Canberra, ACT, Australia
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 03期
关键词
machine learning; reproducing kernels; support vector machines; graphical models;
D O I
10.1214/009053607000000677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.
引用
收藏
页码:1171 / 1220
页数:50
相关论文
共 50 条
  • [31] Importance of kernel bandwidth in quantum machine learning
    Shaydulin, Ruslan
    Wild, Stefan M.
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [32] Kernel fusion and feature selection in machine learning
    Mottl, V
    Krasotkina, O
    Seredin, O
    Muchnik, I
    [J]. Proceedings of the Eighth IASTED International Conference on Intelligent Systems and Control, 2005, : 477 - 482
  • [33] Reproducing Kernel Banach Spaces for Machine Learning
    Zhang, Haizhang
    Xu, Yuesheng
    Zhang, Jun
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3548 - +
  • [34] Sparse Kernel Learning and the Relevance Units Machine
    Gao, Junbin
    Zhang, Jun
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 612 - 619
  • [35] Deformed Kernel Based Extreme Learning Machine
    Chen, Zhang
    Xiong, Xia Shi
    Bing, Liu
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (06) : 1602 - 1609
  • [36] A Fast Reduced Kernel Extreme Learning Machine
    Deng, Wan-Yu
    Ong, Yew-Soon
    Zheng, Qing-Hua
    [J]. NEURAL NETWORKS, 2016, 76 : 29 - 38
  • [37] Reproducing Kernel Banach Spaces for Machine Learning
    Zhang, Haizhang
    Xu, Yuesheng
    Zhang, Jun
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 2741 - 2775
  • [38] TRIANGULAR HERMITE KERNEL EXTREME LEARNING MACHINE
    Li, Yibo
    Zhang, Haixia
    Ji, Xiaofei
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2016, 12 (06): : 1893 - 1904
  • [39] Incremental Relevance Vector Machine with Kernel Learning
    Tzikas, Dimitris
    Likas, Aristidis
    Galatsanos, Nikolaos
    [J]. ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, SETN 2008, 2008, 5138 : 301 - +
  • [40] Kernel machine for fast and incremental learning of face
    Kang, Woo-Sung
    Choi, Jin Young
    [J]. 2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 5377 - +