Kernel methods in machine learning

被引:1315
|
作者
Hofmann, Thomas [1 ]
Schoelkopf, Bernhard [2 ]
Smola, Alexander J. [3 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[2] Max Planck Inst Biol Cybernet, Tubingen, Germany
[3] Natl ICT Australia, Stat Machine Learning Program, Canberra, ACT, Australia
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 03期
关键词
machine learning; reproducing kernels; support vector machines; graphical models;
D O I
10.1214/009053607000000677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.
引用
收藏
页码:1171 / 1220
页数:50
相关论文
共 50 条
  • [1] Kernel methods in Quantum Machine Learning
    Riccardo Mengoni
    Alessandra Di Pierro
    [J]. Quantum Machine Intelligence, 2019, 1 : 65 - 71
  • [2] Kernel methods in Quantum Machine Learning
    Mengoni, Riccardo
    Di Pierro, Alessandra
    [J]. QUANTUM MACHINE INTELLIGENCE, 2019, 1 (3-4) : 65 - 71
  • [3] Quantum machine learning beyond kernel methods
    Sofiene Jerbi
    Lukas J. Fiderer
    Hendrik Poulsen Nautrup
    Jonas M. Kübler
    Hans J. Briegel
    Vedran Dunjko
    [J]. Nature Communications, 14
  • [4] Quantum machine learning beyond kernel methods
    Jerbi, Sofiene
    Fiderer, Lukas J.
    Poulsen Nautrup, Hendrik
    Kuebler, Jonas M.
    Briegel, Hans J.
    Dunjko, Vedran
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Kernel methods for interpretable machine learning of order parameters
    Ponte, Pedro
    Melko, Roger G.
    [J]. PHYSICAL REVIEW B, 2017, 96 (20)
  • [6] A review of machine learning kernel methods in statistical process monitoring
    Apsemidis, Anastasios
    Psarakis, Stelios
    Moguerza, Javier M.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 142
  • [7] A Privacy-Preserving Framework for Collaborative Machine Learning with Kernel methods
    Hannemann, Anika
    Uenal, Ali Burak
    Swaminathan, Arjhun
    Buchmann, Erik
    Akguen, Mete
    [J]. 2023 5TH IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS, TPS-ISA, 2023, : 82 - 90
  • [8] Kernel methods in system identification, machine learning and function estimation: A survey
    Pillonetto, Gianluigi
    Dinuzzo, Francesco
    Chen, Tianshi
    De Nicolao, Giuseppe
    Ljung, Lennart
    [J]. AUTOMATICA, 2014, 50 (03) : 657 - 682
  • [9] Association of AdaBoost and Kernel Based Machine Learning Methods for Visual Pedestrian Recognition
    Leyrit, Laetitia
    Chateau, Thierry
    Toumayre, Christophe
    Lapreste, Jean-Thierry
    [J]. 2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 1020 - +
  • [10] Transfer Learning with Kernel Methods
    Adityanarayanan Radhakrishnan
    Max Ruiz Luyten
    Neha Prasad
    Caroline Uhler
    [J]. Nature Communications, 14