On discrete dynamic output feedback min-max controllers

被引:10
|
作者
Edwards, C [1 ]
Lai, NO [1 ]
Spurgeon, SK [1 ]
机构
[1] Univ Leicester, Dept Engn, Control & Instrumentat Grp, Leicester LE1 7RH, Leics, England
关键词
min-max control; discrete-time; optimal control; output feedback;
D O I
10.1016/j.automatica.2005.05.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper considers output feedback min-max controllers for non-square discrete time uncertain linear systems. Based on previous work, it is demonstrated that static output feedback min-max controllers are only realizable for a specific class of systems. To broaden this class, a compensator based framework is proposed to introduce additional degrees of freedom. The conditions for the existence of such dynamic output feedback min-max controllers are given and are shown to be relatively mild. Furthermore, a simple parameterization of the available design freedom is proposed. An explicit procedure is described which shows how a Lyapunov matrix, which satisfies both a discrete Riccati inequality and a structural constraint, can be obtained using Linear matrix inequality optimization. This Lyapunov matrix is used to calculate the robustness bounds associated with the closed-loop system. A simple aircraft example is provided to demonstrate the efficacy of the design approach. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1783 / 1790
页数:8
相关论文
共 50 条
  • [31] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [32] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [33] An algorithm for the inequality-constrained discrete min-max problem
    Rustem, B
    Nguyen, Q
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 265 - 283
  • [34] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [35] Quasi-min-max optimization of dynamic output feedback robust MPC
    Ping X.
    Liu S.
    Wu Z.
    Liu D.
    Li Z.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (06): : 164 - 176
  • [36] A DISCRETE-TIME MIN-MAX CERTAINTY EQUIVALENCE PRINCIPLE
    BERNHARD, P
    SYSTEMS & CONTROL LETTERS, 1995, 24 (04) : 229 - 234
  • [37] OPTIMAL DEFENSIVE MISSILE ALLOCATION - DISCRETE MIN-MAX PROBLEM
    SOLAND, RM
    OPERATIONS RESEARCH, 1973, 21 (02) : 590 - 596
  • [38] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [39] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [40] A min-max theorem on feedback vertex sets (Preliminary version)
    Cai, MC
    Deng, XT
    Zang, WN
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 73 - 86