MDLatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion

被引:311
|
作者
Li, Hui [1 ]
Wu, Xiao-Jun [1 ]
Kittler, Josef [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, Surrey, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Image fusion; Task analysis; Transforms; Matrix decomposition; Sparse matrices; Feature extraction; Image decomposition; latent low-rank representation; multi-level decomposition; infrared image; visible image; SHEARLET TRANSFORM; FACE RECOGNITION; PERFORMANCE; INFORMATION;
D O I
10.1109/TIP.2020.2975984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image decomposition is crucial for many image processing tasks, as it allows to extract salient features from source images. A good image decomposition method could lead to a better performance, especially in image fusion tasks. We propose a multi-level image decomposition method based on latent low-rank representation(LatLRR), which is called MDLatLRR. This decomposition method is applicable to many image processing fields. In this paper, we focus on the image fusion task. We build a novel image fusion framework based on MDLatLRR which is used to decompose source images into detail parts(salient features) and base parts. A nuclear-norm based fusion strategy is used to fuse the detail parts and the base parts are fused by an averaging strategy. Compared with other state-of-the-art fusion methods, the proposed algorithm exhibits better fusion performance in both subjective and objective evaluation.
引用
下载
收藏
页码:4733 / 4746
页数:14
相关论文
共 50 条
  • [11] MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion
    Zhang, Wangwei
    Dai, Menghao
    Zhou, Bin
    Wang, Changhai
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (08): : 5067 - 5089
  • [12] A Novel Infrared and Visible Image Information Fusion Method Based on Phase Congruency and Image Entropy
    Huang, Xinghua
    Qi, Guanqiu
    Wei, Hongyan
    Chai, Yi
    Sim, Jaesung
    ENTROPY, 2019, 21 (12)
  • [13] Infrared and visible image fusion through hybrid curvature filtering image decomposition
    Liu, Guote
    Zhou, Jinhui
    Li, Tong
    Wu, Weiquan
    Guo, Fang
    Luo, Bing
    Chen, Sijun
    INFRARED PHYSICS & TECHNOLOGY, 2022, 120
  • [14] MdedFusion: A multi-level detail enhancement decomposition method for infrared and visible image fusion
    Tang, Haojie
    Liu, Gang
    Tang, Lili
    Bavirisetti, Durga Prasad
    Wang, Jiebang
    INFRARED PHYSICS & TECHNOLOGY, 2022, 127
  • [15] Infrared and Visible Image Fusion Objective Evaluation Method
    Ledwon, Daniel
    Juszczyk, Jan
    Pietka, Ewa
    INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 268 - 279
  • [16] A NOVEL FUSION ALGORITHM of VISIBLE IMAGE AND INFRARED IMAGE BASED ON NSCT
    Cao, Zhenghong
    Guan, Yudong
    Wang, Peng
    Ti, Chunli
    ADVANCED RESEARCH ON ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL, PTS 1 AND 2, 2012, 424-425 : 223 - +
  • [17] Infrared and Visible Image Fusion Based on Innovation Feature Simultaneous Decomposition
    He, Guiqing
    Dong, Dandan
    Xing, Siyuan
    Zhao, Ximei
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1174 - 1177
  • [18] Infrared and visible image fusion based on relative total variation decomposition
    Chen, Jun
    Li, Xuejiao
    Wu, Kangle
    INFRARED PHYSICS & TECHNOLOGY, 2022, 123
  • [19] Infrared and visible image fusion based on nonlinear enhancement and NSST decomposition
    Xing, Xiaoxue
    Liu, Cheng
    Luo, Cong
    Xu, Tingfa
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [20] Infrared and visible image fusion based on nonlinear enhancement and NSST decomposition
    Xiaoxue Xing
    Cheng Liu
    Cong Luo
    Tingfa Xu
    EURASIP Journal on Wireless Communications and Networking, 2020